
Facoltà di Scienze Matematiche, Fisiche e Naturali
Corso di Laurea in Fisica

Interconnection networks simulations for computing
systems dedicated to scientific applications at the

exascale

Dissertazione di Laurea Magistrale

Relatore: Candidato:
Dott. Piero Vicini Flavio Pisani

Matricola:1344386

Anno Accademico 2015/2016

i

Contents

1 Evolution and new frontiers of computational Physics 2
1.1 Moore’s law and the growth of computational power 2
1.2 Software Complexity in parallel computing 4

1.2.1 Amdahl’s and Gustafson’s law 4
1.2.2 Dependencies . 5
1.2.3 Race conditions . 6

1.3 A case study: the DPSNN . 6
1.3.1 Modelling a neural network 6
1.3.2 Spiking neuron model . 8
1.3.3 Connectivity model . 9

2 Interconnection networks 10
2.1 Networks classification . 10
2.2 Network topologies . 12

2.2.1 N-Dimensional torus/mesh 12
2.2.2 Dragonfly . 13

2.3 Router model . 14
2.4 Packet terminology . 15
2.5 Switching techniques . 16

2.5.1 Store and Forward (SAF) . 16
2.5.2 Wormhole . 17
2.5.3 Virtual-cut-through (VCT) 18

2.6 Routing algorithms . 18
2.6.1 Virtual channels . 18
2.6.2 Deadlock . 19
2.6.3 Livelock . 21

2.7 Selected routing algorithms . 21
2.7.1 e-cube [16] . 21
2.7.2 star-channel [17] . 22
2.7.3 Smart dimension-order . 23
2.7.4 Min-routing [13] . 24

2.8 Real world examples . 25
2.8.1 The ExaNeSt project . 26
2.8.2 The APEnet network . 26

Contents ii

3 Network simulation implementation 29
3.1 Prototypes and simulations . 29
3.2 Selection of the simulation tool . 30
3.3 Selection and comparison of simulation frameworks 32

3.3.1 ns-3 . 32
3.3.2 J-sim . 32
3.3.3 OMNeT++ . 32
3.3.4 Framework selection . 33

3.4 Implementation of the simulator . 33
3.4.1 General architecture . 33
3.4.2 VCT simulation library . 34
3.4.3 Torus topology implementation 38
3.4.4 Fully connected dragonfly topology implementation 40
3.4.5 Consumers implementation 42

4 Selection and analysis of simulations and benchmarks 46
4.1 Metrics for an interconnection network 46
4.2 Performance plots . 47
4.3 Application scaling . 47
4.4 Synthetic tests . 48

4.4.1 Accepted traffic . 48
4.4.2 Latency . 49
4.4.3 Comparison of tori . 49
4.4.4 Comparison of routing algorithms 50
4.4.5 Evaluation of dragonfly . 50

4.5 DPSNN testing . 51

5 Conclusion and future work 55

iii

Acronyms

BNF Burton Normal Form

CNF Chaos Normal Form

DPSNN Distributed Polychronous Spiking Neural Network

FIFO First In First Out

FLOPS Floating Point Operations per Second

FPGA Field Programmable Gate Array

FSM Finite State Machine

HDL Hardware Description Language

HPC High Performance Computing

J-sim JavaSim

LC Link Controller

LIF with SFA Leaky Integrate and Fire with Spike-Frequency Adaptation

LQCD Lattice Quantum Chromo-Dynamics

MPI Message Passing Interface

NIC Network Interface Card

ns-3 network simulator 3

NVM Non-Volatile Memory

OMNeT++ Objective Modular Network Testbed in C++

QoS Quality of Service

RDMA Remote Direct Memory Access

SAF Store and Forward

VCT Virtual-cut-through

1

Introduction

The computational power available to scientific applications is constantly growing,
giving access to unexplored regions of computational physics. The next frontier for
High Performance Computing (HPC) is the exascale, i. e. machines capable of 1018

Floating Point Operations per Second (FLOPS). Taking into account the actual
compute power available from a single compute unit, the number of nodes needed
to reach the exascale is around 106. The interconnection network is a critical part
of the system and has to minimize the time required to send information over the
network, while providing enough bandwidth and scalability.

The design and the optimization of an interconnection networks is a complex
task because the behaviour of the full system is highly dependent on the topology,
the routing algorithm and the traffic. In this perspective large scale simulations
of the network architecture under design are mandatory to achieve optimal perfor-
mances. The main work of this thesis is to implement a low level network simulator
based on the APEnet/APElink network protocol, a proprietary interconnection sys-
tem developed by the APELab of INFN and targeting HPC platforms optimized
for scientific computing. An effective network simulator can be implemented using
Hardware Description Language (HDL) or high level programming languages (like
C++); running a simulation using an HDL is more accurate but requires more com-
puting power and since we are interested in exascale-sized systems this approach is
not feasible. Furthermore the simulator must be accurate and flexible enough to
allow for fast and effective modifications of network topology, routing algorithm and
injected traffic. The simulator developed in this thesis is based on the OMNeT++
C++ framework which provides enough flexibility and power to meet all the re-
quirements. Different routing algorithms and different network typologies has been
explored, evaluated and characterized using both synthetic and real application
traffic; in particular a neural network simulator traffic generator has been imple-
mented, in order to evaluate the achievable performance of the network using traffic
extracted by a great challenge brain simulation application: the INFN Distributed
Polychronous Spiking Neural Network (DPSNN).

2

Chapter 1

Evolution and new frontiers of compu-
tational Physics

In this chapter we will analyse the progress made by computing hardware in the last
decades and its impact on computational physics. Problems that were extremely
difficult to solve in the 80’s now can be easily computed on consumer desktops
thanks to the progress made by computer science and microelectronics. To solve
computationally hard problems of the past in less time and using smaller systems
is useful, but the most challenging part is to solve problems that were impossible
or impractical to solve in the past using cutting-edge technology today.

1.1 Moore’s law and the growth of computational power
In 1965 Gordon Moore published a paper on the Electronics Magazine containing
a prediction:

“The complexity for minimum component costs has increased at a rate of roughly
a factor of two per year. Certainly over the short term this rate can be expected to
continue, if not to increase. Over the longer term, the rate of increase is a bit more
uncertain, although there is no reason to believe it will not remain nearly constant
for at least 10 years”. [1]

This prediction was pretty accurate as we can see from Figure 1.1. An higher
transistor count means more computational power available but how much more?
Physicists are not interested in counting transistors, they want to solve interesting
problems using the computing platform so we need to define a more appropriate
metric for computational power. Quantifying the computational power of a given
system is a complex task because the performances of the platform may vary signif-
icantly from a workload to another, resulting in misleading numbers. The de-facto
standard used by the supercomputing community is to measure the Floating Point
Operations per Second (FLOPS) that a system can perform using a linear algebra
benchmark called LINPACK [2].A list of the 500 most powerful computing systems
available in the world has been published twice a year since 1993 by the top500
organization [3].

The computational power available is growing exponentially giving more power
and more troubles to computational scientists. Usually the code used in scientific
simulation is written using a sequential paradigm and all the instructions are exe-

1.1 Moore’s law and the growth of computational power 3

curve shows transistor
count doubling every
two years

2,300

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

2,600,000,000

1971 1980 1990 2000 2011

Date of introduction

4004

8008

8080

RCA 1802

8085

8088

Z80

MOS 6502

6809

8086

80186

6800

68000

80286

80386

80486

Pentium
AMD K5

Pentium II
Pentium III

AMD K6

AMD K6-III
AMD K7

Pentium 4
Barton Atom

AMD K8

Itanium 2 Cell
Core 2 Duo

AMD K10
Itanium 2 with 9MB cache

POWER6

Core i7 (Quad)
Six-Core Opteron 2400

8-Core Xeon Nehalem-EX
Quad-Core Itanium Tukwila
Quad-core z196
8-core POWER7

10-Core Xeon Westmere-EX

16-Core SPARC T3

Six-Core Core i7

Six-Core Xeon 7400

Dual-Core Itanium 2

AMD K10

Microprocessor Transistor Counts 1971-2011 & Moore's Law

T
ra

ns
is

to
r

co
un

t

Figure 1.1. Transistor count of microprocessors over the years. Original image from
wikipedia .

	10000

	1x106

	1x108

	1x1010

	1x1012

	1x1014

	1x1016

	1x1018

1958 1964 1970 1976 1982 1988 1994 2000 2006 2012 2018

C
om

pu
ti
n
g	
po
w
er
	[
Fl
op
/s
]

time	[year]

Plot	of	highest	supercomputer	performance	over	time

Computing	power

Figure 1.2. Supercomputing maximum performance over the years measured in FLOPS,
data after 1993 are from the top500 list.

1.2 Software Complexity in parallel computing 4

cuted by a single processing core one after the other; due to technological limitations
every supercomputing system uses parallelism to grow in performances: multicore
nodes are interconnected by an high-speed low-latency network infrastructure; as an
example, the most powerful machine available in the world1 (Sunway TaihuLight)
has 10649600 cores and provides 93014.6 TFLOPS of computing power. To get the
full computing power of the system the simulation must run in parallel onto the mul-
tiple cores available. The task of writing efficient parallel code is very challenging
and it will be discussed in more detail in next section.

1.2 Software Complexity in parallel computing
In order to take advantage of a multi-core computing platform the programmer has
to split the code into multiple program flows that should be able to run at the same
time. The complexity of this task may vary from “very low” to “nearly impossible”
depending on the actual algorithm. In the next sections we will discuss the main
important topics in parallel computing.

1.2.1 Amdahl’s and Gustafson’s law

Before trying to parallelize an algorithm it is useful to estimate the maximum the-
oretical speedup2 achievable by parallelizing a given algorithm. This maximum
performance boost can be calculated using the following equation, known as the
Amdahl’s law proposed by Gene Amdahl [4]

S = 1
1− p+ p

s

(1.1)

where S is the theoretical speedup, p is the portion of the code that can be par-
allelized and s is the speedup achieved by the parallelization. The maximum time
reduction from running a program in parallel over n processes is n. As we can see
from the (1.1) s < 1

1−p therefore the fraction of the code that is not parallel 1 − p
puts an upper bound to the maximum performance gain achievable, disregarding
the amount of processing cores available. Therefore before trying to spend com-
puting resources increasing s it is crucial to maximize the parallel portion of the
code and then use an appropriate number of parallel processes. As we can see from
Figure 1.3, if the portion of parallel code is not big enough the diminishing return
in the speedup makes using more processes ineffective.

Amdahl’s law assumes that the size of the problem is fixed while the available
resources increases, a more realistic approach to the problem is given the Gustafson’s
law [5] which assumes that the size of the problem can change to achieve a better
fit on the platform available.

S = 1− p+ sp (1.2)
If we what to use more effectively the computing power available we can increase

the size of the simulation. This approach is not always valuable, if the problem has
1According to the top500 list updated in June 2016
2The speedup is defined as the time reduction factor between a reference implementation and

an optimized implementation of a given algorithm. For example a speedup of 2 means that the
optimized version takes half of the time to perform the same task.

1.2 Software Complexity in parallel computing 5

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	0 	5 	10 	15 	20 	25 	30 	35 	40

Sp
ee

du
p

Number	of	processes

Speedup	according	to	the	Amdal's	law	for	different	parallel	portion	of	the	code

p=10%
p=20%

p=30%
p=40%

p=50%
p=60%

p=70%
p=80%

p=90%

Figure 1.3. This figure depicts the speedup versus number of processes achievable accord-
ing to the Amdal’s law for different parallel portion of the code.

a fixed size or there are temporal constraints on the execution of the simulation we
cannot use Gustafson’s approach.

1.2.2 Dependencies

One of the main difficulties in parallelizing algorithms are dependencies, if there is a
chain of sequential instructions depending one on the other the full program cannot
execute in less time than the chain itself. Usually a program flow is composed
by different chains of sequential instructions, therefore to parallelize the code we
need to indentify chains that can be executed in parallel. To fully understand the
problem we need to formalize the concept of dependency, to do so we can use the
Bernstein’s conditions [6]: we consider two separate program sections Pi and Pj ,
there are no dependencies between the two if the input variables I and the output
ones O meet the following conditions:

Ii ∩Oj = � (1.3)
Ij ∩Oi = � (1.4)
Oi ∩Oj = � (1.5)

Conditions (1.3) and (1.4) express a flow dependency: one program section needs the
output of the other one as an input before its execution. Condition (1.5) express an
output data dependency, the execution order of the two program sections affects the
output value of the code. The following example shows dependant and independent
portions of code:

1 c = a ∗ b;
2 d = a + b;
3 e = d / c;

1.3 A case study: the DPSNN 6

The first and the second instructions have no dependencies therefore can be executed
in parallel, on the other hand the third one needs the output of the first two issuing
a flow dependency, therefore it cannot be executed in parallel with the other two.

1.2.3 Race conditions

Multiple program flows running in parallel are usually called threads and they may
share variables and data. Since the execution time of the same thread is not constant
over time, and it can be very different, shared variables are not accessed in a fixed
order. Every time a thread needs to read a variable containing the output of another
thread we need to use a synchronization mechanism or the entire program can
produce inconsistent results.

“Race” conditions are very frequent in scientific simulations and the program-
mer must detect and avoid them. For example if we consider the temporal evolution
of a set of interacting particles we can run the simulation of every particle in par-
allel but we need to update the interaction potential; to update the potential we
need to know the position of all the particles at a given time, which implies syn-
chronizing the different threads. Synchronization can be achieved by using “locks”
and “barriers” which halt threads to maintain the required timing. Stalling threads
generates performance degradation, therefore it is extremely important to reduce
race conditions to fully exploit the potential of the parallel computing platform
available.

1.3 A case study: the DPSNN
Among the many open challenges, understanding brain behaviour through simula-
tions is one of the most interesting ones from a scientific and technological point
of view: learning how our brain works can lead to important discoveries from a
medical perspective; the study of the human brain can be a source of requirements
and architectural inspiration for future parallel/distributed computing systems, and
a parallel/distributed coding challenge. The main focus of several neural network
simulation projects is the search for:

• biological correctness;

• flexibility in biological modelling;

• scalability using commodity technology.

Among all the implementations available the DPSNN [7, 8] has been used as a case
study for the network simulations of this thesis. Developed by P.S Paolucci and E.
Pastorelli from the INFN APE Lab, the DPSNN is a mixed time and event-driven
spiking neural network simulator implementing synaptic spike-timing dependent
plasticity, designed to be natively distributed and parallel [9].

1.3.1 Modelling a neural network

A neural network is made of neurons connected together, the cells receives inputs
from other neurons through contacts on the dendritic tree called synapses, the inputs

1.3 A case study: the DPSNN 7

Figure 1.4. Flow of the DPSNN simulation. Each process iterates over the block repre-
sented in this picture that simulate: the dynamics of neurons, the spiking and plasticity
of the synapses and the exchange of messages through axo-dendritic arborization.

1.3 A case study: the DPSNN 8

generates electrical currents that change the membrane potential of the neuron. The
modelling of the neuron defines when the electric potential changes of the neuron’s
membrane induce the neuron to fire a spike. When a neuron fires it sends an
electrical signal trough the axon to the synapses of all the neurons connected to it.

From the coding point of view, this generic structure can be mapped to a network
of C++ processes communicating through a message passing interface (the default
communication interface is Message Passing Interface (MPI)) and the application
is designed to be easily interfaced with custom communication libraries.

The full neural network is divided into clusters of neurons and their set of in-
coming synapses. The data structure that describes the synapse includes the infor-
mation about the total transmission delay introduced by the axonal arborization
that reaches it. The list of local synapses is further divided in sets according to
the value of the axo-synaptic delay. Every C++ process describes and simulates a
cluster of neurons and incoming synapses. The processes exchange sets of axonal
spikes which contains the identity of the neuron that spiked and the emission time
of each spike. Axonal spikes are only sent to processes having at least a target
synapse for the axon.

The simulation can be divided into two phases: in the first one the neural net-
work is created and all the synaptic connections are generated among the neurons;
the second phase is the actual simulation of the dynamic of neurons and synapses.
The dynamic is calculated using a combination of time-driven and event-driven
approaches for synapses and neurons:

• Event-driven simulation for synaptic dynamics.

• Time-driven simulation for neural dynamics.

Figure 1.4 depicts simulation flow showing the separation between remote and local
operations, and event-driven and time-driven sections.

1.3.2 Spiking neuron model

The neuron model used for the DPSNN simulations is the the Leaky Integrate
and Fire with Spike-Frequency Adaptation (LIF with SFA) [10, 11]. The equations
regulating the dynamics of the membrane potential Vm and the membrane recovery
variable w are the following:

Vm < Vth


V̇m = −Vm−EL

T − gww
Cm

+ Ie
Cm

ẇ = − w
τw

(1.6)

Vm ≥ Vth


Vm = Vreset

w = w +AC

(1.7)

where:

• Vth is the threshold voltage, when Vm reaches Vth the neuron spikes;

• Ie is the total synaptic current;

1.3 A case study: the DPSNN 9

• Cm is the membrane capacitance;

• Vreset is the reset potential value, after the spiking event the membrane po-
tential is reset to this value. To generate a non trivial dynamic Vreset < Vth;

• T and τ are time two time constants;

• The others are constant that defines the kind of neuron and other parameters
of the model.

1.3.3 Connectivity model

Neurons are arranged in cortical columns, each one is composed by ∼ 1000 neurons;
the columns are then organized into a 2D grid and the spacing between the columns
is α ∼ 100 µm, the columns are then mapped onto the processes optimizing calcu-
lation and communication time. Every core on a modern CPU can easily handle
more than one columns reducing the communication between processes.

The local connectivity, i.e. the synapses generated by source neurons belonging
to the same column of the target neuron, has been set to 80%. The lateral (re-
mote) intra-areal connectivity, i.e. the synapses generated by neurons belonging to
different columns placed at distance r, is generated using the following exponential
law:

Ae−
r
λ (1.8)

with A = 0.03 and λ = 290 µm being respectively the peak connection probability
and the exponential decay constant. A cut-off has been set to the synapses gener-
ation, limiting the projection to the subset of columns with connection probability
greater than 1/1000. This generates a column connection stencil of 21x21 centred
onto the source column.

In addition to the synaptic connections described above the simulation imple-
ments external synapses firing at a fixed firing rate, the number of external synapses
is fixed to 540 per neuron.

10

Chapter 2

Interconnection networks

A modern HPC system is made of computing nodes interconnected via an intercon-
nection network. The interconnection network is responsible for transferring all the
data and all the synchronization information needed by the different program flows
running on the system. The network must therefore reduce the communication de-
lay in order to minimize the stall time of the different program flows and optimize
efficiency.

Because of their crucial role in HPC systems, interconnection network have
been extensively studied over the years producing a very complex environment full
of classifications, definitions and obscure terminology. This chapter is intended to
be a very brief look at interconnection networks, especially regarding the project of
this thesis. A comprehensive explanation of interconnection networks can be found
in [12].

2.1 Networks classification
A classification of interconnection networks is shown in Figure 2.1; this scheme is
not fully exhaustive but it is more than adequate for our purposes. According to
this schema we can categorize networks in four main categories: shared-medium
networks, direct network, indirect network and hybrid networks.

Shared-medium networks use a shared communication medium to connect all
the devices. Due to its shared nature the network experiences a severe performance
degradation when the number of nodes increases. They usually provide good multi-
cast/broadcast1 performances and are used in small systems like multi-CPU nodes.

Direct networks uses a point-to-point node-to-node interconnection. Every node
is a compute unit with its own processor, memory and peripherals. Each node
has a router block which handles the communication with a subset of the nodes
called neighbours and all the nodes are connected forming a network topology.
To establish communication between non-neighbours nodes intermediates steps are
used according to the routing function. Direct networks offer good scalability and
are used in many HPC systems.

Indirect networks are made of nodes interconnected through switches. Every
1Amulticast is a special send of a message from a node to many nodes, a broadcast is a particular

case of multicast in which a message is sent to all the nodes

2.1 Networks classification 11

Figure 2.1. Classification of interconnection networks.

2.2 Network topologies 12

node is a compute unit but it has no routing capability, the only network function-
ality of the node is carried out by the network adapter which connects the node
to a switch. Every switch has a fixed number of ports and every port can be con-
nected to: a node, another switch or not connected. The connection of the switches
generates the network topology and the routing algorithm selects the path between
the nodes. Having the compute node outside of the switch increases the distance
between two nodes by two producing higher network latency2. Indirect networks
are commonly used in data centres because they are easier to maintain and do not
require specialized network capabilities from the compute nodes.

Hybrid networks combine the use of shared-medium, direct and indirect network
to achieve better performances. To mitigate the performance degradation of shared-
medium networks a hierarchical structure can be used, generating islands of shared-
medium network interconnected using direct or indirect networks. This approach
is gaining acceptance into the HPC community.

2.2 Network topologies
In both direct and indirect networks the topology can be modelled by a directed
graph G(N,C), where the edges of the graph represent the C unidirectional commu-
nication channels3 and the vertices the N switches or nodes for indirect and direct
networks respectively. Using this simple model we can define some basic network
properties from the graph representation:

• Node degree/Switch radix: Number of channels connecting a specific node/switch
to its neighbours.

• Distance: The distance d(a, b) between node a and node b of the network
is defined as the minimum number of hops required for going from a to b.
Because the graph is directed the distance may not be commutative.

• Diameter: The maximum distance between two nodes in the network.

• Regularity: A network is regular when all the nodes have the same degree.

• Symmetry: A network is symmetric when it look alike from every node.

We will now discuss several network topologies and characterise their properties
with a special focus on scalability.

2.2.1 N-Dimensional torus/mesh

In N-dimensional tori every vertex of the graph is connected to 2N neighbours as
depicted in Figure 2.2, therefore the nodes can be imagined as distributed on an
N-dimensional grid4. The nodes at the boundaries of the grid are connected across
the border of the network providing: periodic boundary conditions, symmetry and

2Network latency is defined as the time to wait before receiving the data over the network.
3Bidirectional channels can be represented as a couple of unidirectional ones.
4The network topology specifies only the connection between the nodes and does not specify

their position

2.2 Network topologies 13

0,0

0,1

0,2

0,3

1,0

1,1

1,2

1,3

2,0

2,1

2,2

2,3

3,0

3,1

3,2

3,3

Figure 2.2. Example of a 4x4 2D torus.

Figure 2.3. Fully connected topology example for a dragonfly network.

regularity. The diameter of the network depends on the shape of the grid and the
dimension of the torus, for an N-dimensional hypercube grid of n nodes the diameter
is N

N√n
2 . From a scalability point of view this topology has a fixed node degree

and a variable diameter, increasing the dimension of the network provides a better
scalability at the cost of more connectivity. Thanks to its fixed degree this topology
is widely used in HPC’s direct networks since adding more nodes does not change
the structure of the node itself.

Meshes are similar to tori but they have open boundary conditions, so the
network is asymmetric and irregular. The degree of the nodes at the boundaries is
2N − 1 and the radius is N N

√
n.

2.2.2 Dragonfly

This topology aggregates routers in an efficient way to make them behave as higher
radix ones [13]. The hierarchical structure of the network is composed by three
levels: router, group and system. The intra-group and inter-group interconnection
network topologies can be selected to achieve the requirements of the system.

In a dragonfly network we have:

2.3 Router model 14

• p Terminals connected to each router using end channels5

• N Network terminals

• a Routers in each group

• h Channels within each router used to connect to other groups

• g Groups in the system

Every router is connected to p terminals, a−1 local channels and h global channels,
therefore the radix of every router is k = p+a+h−1. Because every group consists
of a routers connected via intra-group channels it can be considered as a virtual
router with an effective radix k′ = a(p + h). The parameters a, p and h can have
any values, however to get the optimal load balancing of the network traffic the
parameters should respect the following relation:

a = 2p = 2h (2.1)

This ratio is derived from the fact that a packet uses two local channels every
time it uses an global channel or an end channel. The basic topology is depicted
in Figure 2.3 and uses a fully connected topology for both the inter-group and
intra-group networks: if we make this particular choice the network is regular and
symmetric; the radius of the network is 3 for a direct configuration and 5 for an
indirect one and the radix of the nodes is k = 4

√
(N − 1)43 − 1, using the relation

(2.1) for the parameters. Different topologies can be used to reduce the radix of the
nodes at the cost of an higher network radius.

2.3 Router model
Before going any further in this brief introduction to interconnection networks it
is fundamental to define and describe a router model. A comprehensive and clear
model is the one proposed in [12] which is a good representation of the real hardware
architecture of a router. The internal architecture shown in Figure 2.4 is divided
into the following major components:

• Buffers: First In First Out (FIFO) buffers are used for storing messages in
transit. The model in Figure 2.4 has buffers for input and output channels
but alternative designs may have input or output buffers only.

• Switch: This component connects input buffers to output buffers.

• Routing and arbitration unit: Those components implement the routing
algorithm, selecting the appropriate output channel for an incoming message
and setting the switch accordingly. If the same output channel is requested
by multiple messages at the same time the arbitration unit must resolve the
contention. The arbitration policy can be a simple round robin or a complex
priority algorithm.

5This connection can be done internally for a direct network or externally using a port of the
switch for an indirect network.

2.4 Packet terminology 15

Figure 2.4. Internal structure of a generic router model (LC = link controller). Original
image from [12]

• Link Controller (LC): It implements the flow of the messages across the
channel between two routers.

• Processor interface: This component is a channel interface to the local
processor instead of an adjacent router. It consists of one or more injection
and ejection channels.

This router model is designed for direct networks but can be used as a switch
model for indirect networks if we remove the processor interface.

2.4 Packet terminology
In order to transfer data over the network, they must be prepared and they may be
split in chunks. This process is called packetization and it is done in the following
way: the message to be transferred over the network is split in to chunks of a fixed
size and all of the chunks are then encapsulated into packets. Packets are made of
two parts a data one called payload and a protocol part called header.

The packet is the smallest unit of information that can be sent over the network,
therefore the header must contain all the addressing data needed to deliver the
payload to its destination; this information is crucial for the delivery, so the header
is stored into the first part of the packet. Other useful protocol informations can
be stored into the optional footer which is stored into the last part of the packet.

The packet is then divided into smaller sub-units called flits, those units are the
ones whose transfer is requested by the sender and acknowledge by the receiver.
Flits may be divided into phits which are the units of information that can be

2.5 Switching techniques 16

Packet N

· · ·

footer headerpayload

Packet 1

phit
flit

Figure 2.5. Fragmentation of a message into packets, flits and phits.

physically transferred in a single cycle between two nodes. All the different sub-
units of information are depicted in Figure 2.5.

2.5 Switching techniques
A crucial aspect of a network infrastructure is how the packets are switched and
saved into intermediate nodes during their path. In both direct and indirect net-
works some switching action is required but we have not yet defined a policy for
switching the packets. In this section three of the main switching techniques are
presented: store and forward, wormhole and virtual cut through. Whatever policy
we decide to adopt, we need to manage a critical physical resource: the receiv-
ing/sending buffers. Every switching technique has to decide how to manage the
free space in the buffers and when to start and stop forwarding packets. When there
are packets waiting for resources, the network is in a congested state.

2.5.1 Store and Forward (SAF)

This switching technique is very simple and works as follows:

• The node receives al the flits of the packet and stores them into the receiving
buffer of the channel.

• The header is parsed by the router and the output port is calculated.

• If the receive buffer of the next node has enough free space to store the full
packet and the channel is free the packet is forwarded, otherwise it waits.

This approach let the router deal only with complete packets. The main drawback
of this switching technique is latency: at every hop the switch has to wait for the full
transfer of the packet before forwarding the information. In absence of congestion
the latency L of a packet is given by the (2.2) where: nflits is the number of flits of
the packet, nhops is the number of hops between source and destination and tflit is
the time needed to transfer a single flit6.

L = tflit · nflits · nhops (2.2)

2.5 Switching techniques 17

Figure 2.6. An example of messages travelling through a wormhole network. Message A
is blocked by message B generating network congestion.

2.5.2 Wormhole

This technique is the opposite of the SAF one. The switch forwards the packet a
flit at the time as depicted in Figure 2.6 following this schema:

• The first flits of the packet containing the header are received and stored into
the receiving buffer.

• The header is parsed by the router and the output port is calculated.

• If the receive buffer of the next node has enough free space to store a single
flit and the channel is free the packet is forwarded, otherwise it waits.

• Every new flit is forwarded as soon as available if the buffer and the channel
are free.

In order to take the routing decision the router has to parse the entire header,
this makes crucial keeping the header into the smallest possible number of flits,
preferably one. The main advantage of this approach is the reduced latency by
pipelining of the full packet transmission time across the hops. The latency L in
absence of congestion can be calculated as follows:

L = tflit · (nflit + nhops) (2.3)

Wormhole routing requires a more complex flow control system which has to be able
to stop and resume the transfer of the packet if congestion occurs, and it is more
prone to congestion because a packet uses resource of multiple nodes at the same
time.

6We are neglecting the time spent by the router to make the routing decision, this time is
common to all the switching techniques and therefore not interesting in this comparison

2.6 Routing algorithms 18

2.5.3 Virtual-cut-through (VCT)

In this case we want to take the best from both wormhole and SAF and combine
them into a single technique. A VCT network behaves like a wormhole one apart
from the forwarding requirements: to forward a packet the receiving buffer must
have enough free space to store the full packet. In this way we have the same flow
control simplicity and congestion resources occupancy as in a SAF network but the
same latency of a wormhole network in absence of congestion. The main drawback
is an higher buffer capacity requirement than a wormhole network: in a wormhole
network the buffers must provide at least enough free space to store a single flit; in
VCT and SAF networks the buffers must provide at least enough free space for a
full packet.

2.6 Routing algorithms
A routing algorithm defines which route a packet should take while travelling from
its source to its destination. The selection of the algorithm can heavily affect net-
work performances, therefore we have select it carefully. In this section we will
discuss the minimum requirements for a routing function and we will discuss differ-
ent approaches to the problem of routing a packet.

It is useful to give some basic definitions. A routing function calculates the next
step that a packet has to take in its path towards its destination: in principle we
could use informations gathered across the whole network to calculate the path but,
if we want to achieve good scalability of the system, this approach is not practical. In
this work we will consider routing functions that use only local information coming
from the packet or from the node.

A routing function is connected if any node of the network can reach any node,
and because we want all the packets to be deliverable on the network, every routing
function must be connected. The routing function can select always the same path
between two nodes or can choose between multiple ones according to the network
traffic, the algorithms in the first case are called deterministic, the ones in the second
case are called adaptive. An algorithm is fully adaptive if has the possibility to use
all the possible paths. A routing function is minimal if it delivers a packet from a
to b in d(a, b) hops.

The minimum requirement for a routing algorithm is to deliver packets in a
finite amount of time regardless of the network traffic, an in-depth study of this
condition will be done especially for what concerns deadlock and livelock. Before
introducing the problem we need to introduce one useful instrument to solve it:
virtual channels.

2.6.1 Virtual channels

In section 2.5 we learned that the critical resources while sending packets over a
network are the receiving buffers. A common strategy consists of optimizing the
channel usage and reducing congestion using virtual channels. Virtual channels
consists of a set duplicated buffers multiplexed and demultiplexed into the same
physical channel by the link control logic. From the switch point of view there

2.6 Routing algorithms 19

is no difference between a physical channel and a virtual one because the switch
sees only the buffers, all the physical layer is handled by the link controller. By
adding a virtual channel we can effectively increase the number of channel in the
network without adding the extra cost and complexity of the real hardware link.
All the virtual channels shares the bandwidth of the physical link with a certain
policy, for example round robin. If we select a non uniform policy it is possible to
implement Quality of Service (QoS) into the network using several virtual channels
with different priority levels. In this section virtual channels will be only used to
avoid deadlock.

2.6.2 Deadlock

Deadlock is a configuration of the network in which there are packets that cannot
be delivered. A configuration is an assignment of a set of packets or flits to the
corresponding buffer. A deadlocked configuration occurs when some packets are
blocked for an infinite amount of time because they are waiting for resources oc-
cupied by other congested packets. This condition must be avoided since it breaks
the functionality of the network itself.

A deadlocked configuration is called canonical if all of the packets present into
the network are blocked. We will study only canonical configurations because any
other configuration as a corresponding canonical one. To obtain a canonical dead-
lock configuration it is sufficient to stop injecting new traffic into the network and
wait for the delivery of all the non blocked packets.

The presence or the absence of potentially deadlocking configurations is complex
to determine and it is a property of the routing algorithm in use. The same topology
with the same number of virtual channels may be deadlock-free or not depending
on the selected routing algorithm. On the other hand this property is independent
of the network traffic and must be verified without making any assumption on the
traffic pattern.

To avoid deadlock we will focus on two opposite approaches: the detection of
and the reaction to a deadlock configuration, and the impossibility of deadlock con-
figurations to occur. The first method requires the network to be aware of being in
a deadlocked state and to react breaking the deadlock condition. If we want to cer-
tainly detect a deadlock configuration we need to use non local information which
is usually difficult to collect and analyse in large networks. If we want to use only
local information we can guess if a packet is deadlocked by using a time-out system.
This approach can lead to misidentification of congested packets into deadlocked
ones if the network is heavily congested, leading to performance degradation. The
reaction to a detected deadlock requires the capability of retransmitting packets
that need to free resources. The network must detect and react to the deadlocked
configurations faster than they occur, otherwise different deadlocked configurations
can pileup generating network malfunctions. The second method consists of provid-
ing a routing algorithm that cannot generate deadlocked configurations. Because
this property must be traffic-independent it is not trivial to proof that a routing
algorithm is deadlock-free, but this problem can be easily solved using some graph
theory and an interesting theorem.

We introduce now the concept of channel dependency and the channel depen-

2.6 Routing algorithms 20

0 1

23

a0

a1

a2

a3

(a) Network topology

a1

a0

a3

a2

(b) Channel dependency
graph

Figure 2.7. A four node circular network with its channel dependency graph.

dency graph: there is a dependency between channels i and j, if the routing algo-
rithm can forward a packet holding resources on channel i to channel j; the channel
dependency graph is a directed graph which vertexes are all the unidirectional chan-
nels in the network and edges represents the dependencies between channels. The
following theorem [14] gives a necessary and sufficient condition for a routing func-
tion to be deadlock-free.

Theorem 1. A connected routing function R for an interconnection network I is
deadlock-free if and only if there exists a routing subfunction R1 that is connected
and has no cycles in its channel dependency graph.

If the routing algorithm is deterministic the only connected subfuction is R
itself. Therefore for non adaptive routing the full channel dependency graph must
be acyclic [15].

This theorem can be used to generate deadlock-free routing algorithms as in
the following example: we consider a circular network of four nodes connected by
unidirectional channels, as the one depicted in Figure 2.7a. Because of the simplicity
of this network the only connected routing function is the one that forwards the
packet through the only available channel if the destination is different from the
current node. The dependency graph for this algorithm is shown in Figure 2.7b and
it is not acyclic, therefore the network is not deadlock-free. In this trivial example it
is very easy to find a deadlocked configuration: any configuration with all the buffers
from all the nodes filled up with packets and zero packets arrived at destination is
deadlocked.

If we want to make this network deadlock-free we need to add two virtual chan-
nels, as shown in Figure 2.8a and to use the following routing algorithm:

1 if (destination == current)
2 packet_delivery;
3 else if (source < current)
4 reserve(a_i+1);
5 else
6 reserve(b_i+1);

2.7 Selected routing algorithms 21

0 1

23

a0

b0

a1 b1

a2

a3

(a) Network topology

a1 a0

a3

a2

b1

b0

(b) Channel dependency
graph

Figure 2.8. Modified deadlock-free circular network and channel dependency graph of the
proposed routing algorithm.

This new routing function uses dedicated virtual channel for packets with a
source index smaller that the current node, this modification changes the channel
dependency graph into the one depicted in Figure 2.8b which is acyclic and therefore
the network is deadlock-free.

2.6.3 Livelock

Livelock is a misbehaviour of the routing algorithm which forward packets in a closed
loop that does not contain their destination, resulting in not delivered packets and
wasted network bandwidth. Any minimal routing function is automatically livelock-
free, the distance d between any couple of nodes into the network is a finite quantity,
therefore every minimal path algorithm delivers any packets in d steps. For non
minimal algorithm extra attention to avoid livelock must be paid, especially if the
algorithm uses only local information to calculate the path.

A simple technique to avoid livelock is to limit the number of non minimal hops
that a packet can take, this limitation reduces the flexibility of the algorithm but
avoids infinite looping.

2.7 Selected routing algorithms
In this section several routing algorithms for tori and dragonfly will be presented.
For each algorithm we provide proof of the absence of livelock and deadlock.

2.7.1 e-cube [16]

This is a minimal non adaptive routing algorithm for N-dimensional tori and meshes.
Because of the simplicity of this algorithm it is often used as a base for more complex
ones.

The position of the nodes in the network is indicated by N integers giving the
Cartesian coordinates of the node into the grid. The algorithm starts comparing the
node coordinates against the packet destination coordinates from dimension 0 up to

2.7 Selected routing algorithms 22

dimension N. If the coordinates are different the packet is forwarded following the
minimal path to the destination, if the coordinates are equal no action is required;
if all the coordinates are equal the packet has arrived to its destination. The critical
point of the algorithm is to manipulate the N dimensions in a fixed order7. Figure
2.9 depicts an example of path selected by the e-cube algorithm on 2D torus.

The algorithm uses minimal paths so it is livelock-free by definition. Before
considering the deadlock freedom of the algorithm it is useful to divide the channels
into classes:

• A channel belongs to the class d+ if connects two node in the dimension d in
the increasing coordinates direction.

• A channel belongs to the class d− if connects two node in the dimension d in
the decreasing coordinates direction.

To proof the absence of deadlock configurations, we can use the theorem 1 and
discuss the channel dependency graph. Thanks to the dimension order any channel
of class i± cannot depend on any channel of the class j± where j > i, this removes
all the possible loops between channels belonging to different dimensions. The
algorithm selects the minimum path to the destination, for a given dimension d the
shortest path can be either in the direction + or in the direction − but it cannot
be in both directions. Therefore it is impossible to generate dependencies between
channels d+ and d− in the same dimension. The only possible source of cyclic
dependency left is within channel of the same class. If we consider a mesh network,
packets are not allowed to cross the boundaries of the network, preventing deadlock.
The torus topology requires more attention because the algorithm is not deadlock-
free in the form presented before. A single channel class of a torus is exactly the
same topology as the circular network depicted in 2.7a, therefore adding one extra
channel dedicated to the packets that have crossed the border is enough to remove
any deadlocking situation. The extra virtual channels are only required for half of
the nodes in the class. In the real implementation it is often good practice to keep
the nodes symmetric and add the extra virtual channel for all the nodes in the class.

2.7.2 star-channel [17]

This is a minimal path fully adaptive routing algorithm for N-dimensional tori
and meshes based on the e-cube. This algorithm adds an extra virtual channel in
addition to the ones used by the e-cube to achieve full adaptivity. The idea behind
this routing function is to use the e-cube as an “exhaust valve” for any possible
deadlock configuration originated by the adaptive behaviour.

The network is divided into two sub-networks: one is the e-cube subnet made
of all the channels required by the dimension-order algorithm; the other network is
the the “*” one which has one virtual channel on every link8. The routing algorithm
uses the two networks according to the following rules:

7The order relation can be any total one and it can be selected only once. To change the order
relation the network has to be completely empty.

8Every algorithm can have more virtual channels to implement QoS or other traffic control
features, here we are discussing the minimum requirements for deadlock and livelock free routing.

2.7 Selected routing algorithms 23

0,0

0,1

0,2

0,3

1,0

1,1

1,2

1,3

2,0

2,1

2,2

2,3

3,0

3,1

3,2

3,3

Figure 2.9. Path of the e-cube algorithm on a 2D torus between nodes (3,0) and (0,1).

• A packet can use a free channel of the “*” subnet to follow a minimal path to
its destination in any dimension.

• A packet can use a channel of the e-cube channel only if it respects the di-
mension order criterion.

Livelock can be excluded because the algorithm uses minimal paths. To exclude
deadlock we can use the channel dependency graph. If the e-cube subnetwork can
provide a routing sub-function with an acyclic graph the full algorithm is deadlock-
free according to the theorem 1. Packets can only use the e-cube network if they
met all the dimensional requirements imposed by the algorithm. Because the e-cube
routing function has an acyclic graph, the extra dependency added by the presence
of the “*” subnet cannot generate deadlock configurations.

In a less rigorous way at every node the router can select a channel from a
deadlock-free algorithm, because the algorithm is deadlock-free that channel cannot
be busy for an infinite amount of time.

2.7.3 Smart dimension-order

This algorithm is a partly adaptive non minimal routing algorithm for N-dimensional
tori and meshes based on the e-cube. While introducing the dimension order algo-
rithm we mentioned the importance of keeping the nodes symmetric for technical
reasons, therefore a real implementation of the e-cube on an N-dimensional torus
leaves 2N unused virtual channels for every node. This algorithm takes advantage
of the extra unused channel to provide adaptivity to the network.

At the first first step of the algorithm the router can misroute the packet if the
selected e-cube channel is busy, the packet is forwarded in a different dimension
than the one selected by the dimension order. To avoid deadlock configurations
in the network the routing function uses the the unused virtual channels of the
e-cube. We can partition an N-dimensional torus into 2N hypercubes by splitting
every dimension into two halves, Figure 2.10 depicts the decomposition and shows
the unused channels for a 2D torus. Every node has N channel available for the
misroute packets.

2.7 Selected routing algorithms 24

-,-

-,-

-,+

-,+

-,-

-,-

-,+

-,+

+,-

+,-

+,+

+,+

+,-

+,-

+,+

+,+

Figure 2.10. Decomposition of a 2D torus in 4 regions, every node has 2 free virtual
channels in the direction and dimension identified by the label.

Livelock can be excluded because the algorithm uses a finite number of non-
minimal steps. In this case the router can only do one non minimal hop before falling
back to the minimal algorithm of the dimension order. Deadlock configurations are
excluded because the algorithm performs only one adaptive step in the first node
using a dedicated virtual channel. If we consider the channel dependency graph this
does not changes the acyclic property of the e-cube routing sub-function.

2.7.4 Min-routing [13]

This is a minimal non adaptive routing algorithm for dragonflies and it can be
considered as a base algorithm for adaptive or more complex ones.

Packets in a dragonfly network can be identified by three number:

• Group index (G): it indicates the group

• Router index (R): it indicates the router within the group

• Node index (N): it indicates the node within the router

The min-routing algorithm uses a three step process to forward the packet using
the corresponding local or global channel, for better clarity the algorithm can be
described using this pseudo code:

1 if (G_node != G_destination)
2 if (is_connected(G_node, G_destination))
3 forward_g(G_destination);
4 else
5 forward_l(global_to_local(G_destination));
6 else if (R_node != R_destination)
7 forward_l(R_destination);
8 else
9 forward_i(N_destination);

2.8 Real world examples 25

G0R1R2

G6R0R1

G0G6

G3R3R0G6G3

G3G0

(a) Standard network

G0R1R2

G6R0R1

G0G6

G3R3R0

G6G3

G3G0G0R1R2V

G3R3R0V

G6R0R1V

(b) Network with extra virtual channels

Figure 2.11. Subsets of the total dependency graph for a fully connected dragonfly net-
work. Graph 2.11a depicts a standard configuration with no additional virtual channels.
Graph 2.11b depicts a deadlock-free configuration with extra virtual channels (identified
by a V letter) for local routing of packets coming from other groups.

The function is_connected returns true, if the node has a direct global connection to
the given group, false otherwise. The various forward functions forward the packet
using global, local or internal port accordingly. The function global_to_local returns
the index of the local node which as a global direct connection to the provided group.
This method provides a fully connected minimal routing function.

The algorithm is minimal and therefore livelock-free. If no virtual channels are
used deadlock configuration can occur because there are cyclic dependencies. We
can easily create a loop between ingoing and outgoing packets between different
groups, as depicted in Figure 2.11a because the same local channels are used for
all the packets. In order to break those loops we need to add one extra virtual
channel to the local network dedicated to packets coming from a different group.
If we consider now the channel dependency all the loops are broken as shown in
Figure 2.11b. Note that the dependency graphs are partial to provide a better
understanding of the critical path, the graph in Figure 2.11b is not connected but
this is due to the partial nature of the graph itself and it does not imply a not
connected routing function.

2.8 Real world examples

In this section we will introduce the ExaNeSt [18] European project and the APEnet
network infrastructure, developed by the INFN, as examples of a real world HPC
system and of a custom direct network interconnection. Introducing the character-
istics of this two projects is important because they will be used as target for the
simulations implemented.

2.8 Real world examples 26

Table 2.1. Multi-tiered network structure of the ExaNeSt system.

Hierarchy Switching
Tier 4 System Optical/Ethernet
Tier 3 Rack/Cabinet Optical/Ethernet/APEnet
Tier 2 Backplane Chassis Ethernet/APEnet
Tier 1 Blade/Mezzanine APEnet
Tier 0 Node AXI/APEnet

2.8.1 The ExaNeSt project

ExaNeSt is one of three European projects that support an exascale-class comput-
ing architecture for systems built upon 64-bit ARM processors. In ExaNeSt, we will
design and implement: a physical rack prototype and its liquid-cooling subsystem
providing ultra-dense compute packaging; a storage architecture with distributed
(in-node) Non-Volatile Memory (NVM) devices; a unified, low-latency intercon-
nect, designed to efficiently uphold desired QoS guarantees for a mix of storage
with inter-processor flows; and efficient rack-level memory sharing, where each page
is cacheable at only a single node. Our target is to test alternative storage and
interconnect options on actual hardware, using real world HPC applications.

The network hierarchy

The ExaNeSt system is composed by different hierarchical levels that generates a
multi-tiered scalable interconnection system, an overview of the full structure is in
Table 2.1. From a network technology point of view we have different interconnec-
tion media working together in an hybrid network: starting from the lower tier we
have a shared-medium network, the AXI bus, and the APEnet direct network; in
the upper tears we can find direct network technology like Ethernet. The strategy
behind this non-uniform network architecture is to achieve ultra low latency from
shared-medium and direct network, and scalability and cost effectiveness of indirect
network for the long distance communication. The underlying network topologies
are object of intensive studies to achieve the maximum available performances.
Among all the available ones dragonfly and N-dimensional tori are well considered
their for latency and scalability properties. One of the goals of this thesis is to
produce a simulation environment that allows to explore networking solutions for
the APEnet part of the full network infrastructure.

2.8.2 The APEnet network

The APEnet project of INFN [19] delivered a point-to-point network controller for
3D-torus topology, the key feature of this networking system are high throughput
and low latency. The original target for this network card was GPU-based HPC
system optimized for Lattice Quantum Chromo-Dynamics (LQCD) named QUonG.
In order to get the maximum performances available the APEnet system is equipped
with full Zero-copy support for data transfers involving both GPU and system
memory allowing for lower latency and lower resource utilization.

2.8 Real world examples 27

Figure 2.12. The APEnet DNP is the core of the architecture composed by the Torus
Links, Router and Network Interface macroblocks.

The internal structure of the system is depicted in Figure 2.12 and it is composed
of three parts:

• Network Interface: it handles all communication with the CPU and GPU
through the PCIe bus and implements the Remote Direct Memory Access
(RDMA) system.

• Router: it combines the 7x7 switch, the routing and arbiter logic. The
switching technique used is VCT and the routing algorithm is the e-cube.

• Torus Links: this block is composed by the 6 bidirectional link required
to form a 3D-torus. Every link is equipped with the required buffers and
implements the proprietary protocol APElink. Any link has two RX FIFOs,
one per virtual channel, and one TX FIFO.

The structure of the node is compatible with the example router model presented
in § 2.3 and it adds the extra complexity needed to interface with a real system.
From a networking simulation point of view the PCIe interface is not strictly rel-
evant and therefore it will not be studied in this work, furthermore the ExaNeSt
implementation of APEnet will be based onto the AXI bus instead of the PCIe one.

The APElink: Data Link Layer

The Data Link Layer is a key part of the network implementation and its architec-
ture has to be deeply to implement an accurate low level network simulator.

2.8 Real world examples 28

The APElink [20] protocol is based on 128bit-words9 aggregated in packets.
Every packet has an header, a footer and a payload, the maximum payload size is
4096 bytes.

The actual protocol itself is a word-stuffing one, meaning that the transmission
of a magic word is required in order to stop the flow of data frames and distinguish
them from control frames. To initiate a new data transmission two additional words
are included into the data flow (magic and start). The efficiency of the protocol is
defined as the ratio between the number of data word and the number of word sent,
in this case we have at minimum 4 control words (header, footer, magic, star) for
every data packet resulting in an efficiency for a payload of size Pmax = 256 words
of:

Emax = Pmax
4 + Pmax

= 256
4 + 256 = 0.985 (2.4)

Because of the VCT switching the protocol must include informations about the
status of the receiving buffers to prevent overflow. This additional information is
contained into control frames called credits. The sending interval of the credits is
a crucial choice for network stability and performances: if the credits are sent too
often the efficiency of the protocol drops because of the interleaved control frames;
on the other hand if the sending interval for the credits is too large the router has to
perform unneeded interruptions into the communication, if the informations about
the remote buffer are not updated the router must assume that the words are still
in the buffer resulting in fake congestion. In order to select the correct sending
frequency we need to take into account the latency of the channel, the full latency
for a credit exchange is:

LT = 2(LL + LR) (2.5)

where LL is the latency induced by the synchronization between the receiving
and transmitting side and LR is the time of flight of the packet. The actual values
measured onto the real system are: LL = 20 cycles, LR = 35 cycles and LT = 110
cycles. To avoid additional latency credits are sent every C = 35 cycles.

A low level network simulator implementing the APElink protocol has to provide
VCT routing of packets composed by a one word header, a one word footer and a
multiple word payload; to prevent buffer overflow a flow control based on credits
messages has to be implemented.

9Those specifications are for the APEnet V4, the most recent version (V5) uses 256bit-words;
the protocol itself does not depend on the size of the data path used and therefore we will use the
V4 specification in this description

29

Chapter 3

Network simulation implementation

In this chapter we will discuss in detail the aspects of performing low level network
simulations of proprietary network infrastructures, in particular we will implement
a flexible and low level simulator for the APElink/APEnet protocol.

3.1 Prototypes and simulations
The design of an high performance interconnection network would be a demanding
task on its own, but we have to factor another major problem: in the early stages of
the design process the actual hardware is not available and even in the late stages it
may not be available at the scale required by the problem. Prototypes are usually
very expensive and they have to be used carefully in order not to waste important
resources from the available budget.

The use of HDLs and programmable logic such as Field Programmable Gate Ar-
ray (FPGA) reduces the complexity of designing prototypes and provides reusable
components usable to test different configurations. The main drawback with ap-
proach is the time needed for the development, designing and debugging an HDL
project requires a lot of resources. The use of programmable logic for prototyping
does not help from the scalability point of view: it is feasible to build a small test
setup to evaluate the performances on a very small scale; it is unfeasible to build a
large scale test system to evaluate large scale performances.

In order to perform large scale tests the only practicable way is to simulate the
system. If we have the HDL code available for the FPGA prototype a first idea
could be using the simulation engine available for the selected hardware description
language. The computing power required by HDL simulators is very high and
their are not designed for large scale system testing. The use of HDL simulators
is very useful but it is limited to validation of the actual hardware design on a
very small scale. The next available option is to use a high level programming
language, like C++, and implement a large scale simulation of the system. In order
to perform a realistic evaluation of the network performances the simulation has to
replicate accurately the low level behaviour of the network and performing a low
level implementation of the link protocol and the switching technique. The simulator
must be flexible and allow the designer to easily exchange network topology and
routing algorithm to evaluate and select the best configuration for the system.

Simulations can be divided into two main classes, according to their evolution

3.2 Selection of the simulation tool 30

policy, continuous simulation and discrete event simulation. In continuous simula-
tions the state of the system is continuously tracked over time using a fixed temporal
resolution. On the other hand a discrete event simulation uses events to keep track
of the temporal evolution: the events are marked with a timestamp, which is used
to update the simulation time, providing a variable temporal resolution.

A low level network simulation’s timeline is usually non homogeneous and con-
tains quickly evolving portions interleaved by static ones, thanks to its ability of
skipping inactive temporal segments a discrete event approach is more effective.

3.2 Selection of the simulation tool
The problem of simulating a network infrastructure can be addressed in different
ways according to: time and manpower available, nature of the network, data and
results required, ecc; therefore it is crucial to set all the constraints and goals of the
actual simulation that we are going to implement:

• Implementation of a modular and custom network architecture based on the
APElink/APEnet protocol at flit level;

• Testing and comparison of different network topologies to evaluate perfor-
mances and scalability;

• Testing and comparison of different routing algorithms to select the best trade
off between performance and resources;

• Injection of arbitrary traffic into the network especially “traced” traffic from
real scientific applications;

• Testing the “exascalability” of the network i.e. running exascale-size simula-
tions;

• Characterize the network in terms of: latency, throughput and congestion.

With all the basic constraints fixed, we can now illustrate different possible ap-
proaches to the problem and select the one that fits better our particular case.

To implement a network simulation there are three main ways to proceed:

• Off the shelf simulator:

+ Pros:
+ No development is required
+ Usually they are better optimized for a specific task

- Cons:
- Adding new features may be extremely difficult or impossible
- Available topologies, routing algorithms, network architectures and
protocols are fixed and limited

- They do not provide full access to the customization of the network
parameters

3.2 Selection of the simulation tool 31

• Simulation library:

+ Pros
+ The development time can be entirely dedicated to the implementa-

tion of the network model
+ They are designed to be expanded by the user
+ The simulation core is usually well optimized
+ Most of them provide out of the box parallel programming support
+ The debugging and validation of the simulation core is done by the

whole community of users resulting in a more reliable code
- Cons

- The learning curve of the framework may be steep, especially the
library is not well documented

- They may provide unneeded features that may slow down the appli-
cation

• Implementation from scratch:

+ Pros
+ Fully customizable; everything is under the complete control of the

developer
+ The code can be optimized and tailored for a specific implementation

- Cons
- A lot of effort goes into the development of the simulation kernel
taking away resources from modelling the actual network

- Optimization and/or parallel programming support must be pro-
vided

- The code is not validated and all the bug fixing can be time consum-
ing and lead to incorrect results

Analysing the requirements and the available solutions we can easily discard the
off the shelf approach because: it does not allow the implementation of a custom
network architecture, it does not allow full freedom in terms of network topology,
routing algorithm and traffic injection. In principle an open source off the shelf
simulator could be modified to fit the requirements of the project but this usually
requires more effort than an implementation from scratch, the code may not be well
documented nor designed with flexibility in mind.

On the other hand a full implementation from scratch offers full flexibility at
the cost of a bigger effort. This consideration alone is not enough to discard this
method but, if we take into account that the goal of this thesis is to implement an
accurate model of the APEnet network and of the traffic produced by real scientific
simulations, the implementation of a simulation engine is not interesting for this
particular research. In addition to this the use of a mature simulation framework
can lead to more trusted results due to the higher validation of the code itself. A
from scratch implementation will be considered only if none of the available libraries
provides enough flexibility and scalability to fulfil the requirements.

3.3 Selection and comparison of simulation frameworks 32

Using a simulation library/framework provide all the flexibility needed without
taking away important resources from the actual topic of the project. Simulation
libraries are designed with reconfigurability in mind therefore code changes can
be implemented in a more efficient way. An important requirement for a good
simulation framework is a good documentation; developing a simulation model using
a badly documented framework can result in a bigger effort than a full custom
implementation.

For this project we decided to use a simulation library for the reasons just
provided. In the next section we are going to evaluate and to select a suitable
framework among the available ones.

3.3 Selection and comparison of simulation frameworks
Over the years, many network simulation frameworks have been developed and
many surveys has been conducted to help developers choosing the right framework
for a specific task [21, 22]. In this thesis we will examine three of the most used,
open source available ones: ns-3 [23], J-sim [24] and OMNeT++ [25].

3.3.1 ns-3

network simulator 3 (ns-3) is a discrete event network simulator targeted for ed-
ucational and research use. The simulator is written in C++ and offers optional
Python bindings. There is no dedicated scripting language used to describe the net-
work topology. The tool provides pre-implemented standard topologies and custom
ones must be implemented in C++ or Python using the provided API functions.
It defines a model of working procedure of packet data networks and provides an
engine for simulation. It is possible to use ns-3 to model non-internet-based models
but the entire structure of the simulator is more oriented towards the internet and
WiFi environment. ns-3 supports parallel execution using MPI allowing to run large
scale simulation and to take advantage of parallel computing platforms.

3.3.2 J-sim

JavaSim (J-sim) is a component-based, compositional simulation environment. It
is implemented using the autonomous component programming model which eases
the task of modelling complex hierarchical hardware structures. As suggested by
the name the simulator is written in Java and provides many ready to use internet-
based models together with a GUI library. The latest release of the project is from
2006 so the development of the project seems to be completely blocked.

3.3.3 OMNeT++

Objective Modular Network Testbed in C++ (OMNeT++) [26, 27] is a C++-based
discrete event simulation library developed for modelling communication networks,
multiprocessors and distributed systems; thanks to an extensible and modular de-
sign it can be easily used to implement any discrete event simulation. OMNeT++
uses a hierarchical structure made by module connected through channels. Two

3.4 Implementation of the simulator 33

different kind of modules are used: simple modules and compound modules. Sim-
ple modules are the active components of the simulation, they are implemented in
C++ as an object oriented specialization of a simple module base class. Compound
modules are passive containers for any number of simple and compound modules.
The connection between modules is defined using OMNeT++’s topology description
language, NED.

This development framework provides also: support to parallel distributed sim-
ulations using MPI [28], GUI support for developing the code and for running/de-
bugging the simulations, tools for data analysis and statistics collection and support
for common network protocol like TCP and WiFi communication1.

3.3.4 Framework selection

Among all the frameworks considered in the surveys done over the years and the
final considerations on the three presented in this section, OMNeT++ has been
selected to be the framework to use in this project for the following reasons:

• It is under constant development;

• It provides mature support for parallel distributed simulation over MPI;

• It has a comprehensive and powerful scripting language to define module and
network topologies;

• It is largely used and well considered in the scientific community;

• It has a well engineered modular architecture which can be easily expanded
to implement custom network architectures.

3.4 Implementation of the simulator

3.4.1 General architecture

The simulator is implemented in a modular way which allow an easy implementation
of different network topologies, routing algorithms and traffic generators. The base
functionality of the APEnet network is implemented in a VCT simulation library
which provides the base components of a network peer described in § 2.3. All the
modules of this library are completely unaware of the network topology and the
routing algorithm, this is possible thanks to the power of C++ and the use of
virtual functions.

The building blocks provided can be used to generate network nodes to be used
in an higher level describing the network topology. For each implemented topology
we need to specify, other than the structure of the node, all the topology specific
parameters and variables such as network coordinates.

The last piece of this schema is to implement the specific functionality of routing
algorithms and traffic generators. The behaviour of a router is strictly correlated

1This is not relevant for the present project because one of the goals is to implement the custom
protocol of the APEnet network.

3.4 Implementation of the simulator 34

Figure 3.1. Inheritance diagram of the router for a torus network. The first module for
above is the topology-unaware VCT simulation library component, the second is the
topology specialized one and the third level contains all the different available routing
algorithms.

to the underlining network topology, therefore to implement specific routers we can
inherit from the generic router class for the given topology. The actual routing
function is implemented as pure virtual function defined in the VCT simulation
library router class. Figure 3.1 depicts the inheritance diagram with the three
layers of abstractions for a torus network router.

A traffic injector is a component of the simulation which takes care of sending the
packets into the network replacing the applications running on the real system. The
emulation of the network part of an application can be represented by two entities
a consumer and a producer, the first is responsible of retrieving the data from the
network and the second is responsible of sending new data into the network. In order
to provide a realistic reaction to the incoming traffic the consumer must interact with
the producer providing informations about the inbound packets. Traffic injectors
are not strictly bound to a specific network topology, therefore, to achieve a better
modularity and re-usability of the code, we use a different approach to implement
the consumers/producers. We create a topology unaware traffic generator which
uses integer indexes to address different nodes, the same strategy used by MPI
with the rank IDs, indexes are then translated into real network coordinates by the
topology specific traffic handler. The use of C++’s templates makes this option
viable and easy to implement.

As described in § 3.3.3 an OMNeT++ simulation model is composed by sim-
ple modules which communicate trough messages. Both messages and modules are
C++ objects and can be specialized to provide the previously discussed structure.
This, together with the configurable and hierarchical nature of the NED language,
makes the simulation model extremely flexible and easily expandable to new topolo-
gies, routing algorithms and traffic injectors. Reusing large parts of the code helps
with the consistency of the simulations between different configurations.

3.4.2 VCT simulation library

In this section we present all the modules necessary for building network nodes; an
example of network node is depicted in Figure 3.2.

3.4 Implementation of the simulator 35

Router

Ch
Logic
Ch

Logic

Consumer

Ch
Logic
Ch

Logic

Figure 3.2. An exmple of a network node build using the modules provided by the VCT
simulation library. This particular node has two external channels, whith two virtual
channels each, and one internal channel.

Figure 3.3. Internal structure of the Channel logic compound module for a three virtual
channel configuration.

Buffer

This module provides the FIFO buffer functionality needed to implement transmis-
sion channels in a network peer. It has: a fixed size specified by a parameter, an
input port, an output port and two bidirectional control ports. The data coming
from the input port are stored into the FIFO buffer, a buffer overflow causes a fatal
simulation error. The consumer can request data sending a message to the con-
trol port of the module, buffer underflow requests are ignored. The module sends
through the control ports messages containing informations about the internal buffer
state to the producer and the consumer.

Channel logic

This module implements the functionality of the APEnet link control:

• multiplexing/demultiplexing of the data into the virtual channels;

• sending flow control credits on the channel;

3.4 Implementation of the simulator 36

• forwarding received flow control credits to the router.

This module has one bidirectional port towards the physical channel, one consumer
interface from the TX FIFO, one producer interface per virtual channel towards
the RX FIFOs and one port to forward credits to the router. Flow control packets
contains the number of consumed words in each virtual channel buffer for that
specific physical channel in a differential way. Those packets are sent at fixed time
intervals like in the APElink protocol and the frequency is specified as a parameter;
to speed up, the simulation flow control packets are sent only if the buffer occupancy
has changed since the last flow control packet. This procedure is equivalent to the
one used in the APElink protocol and it is less prone to events race condition
problems, nevertheless it is less reliable on a real hardware system in the event of
the loss of a flow control packet.

The library provides a compound module which combines Buffers and Channel
logic modules to ease the implementation of communication channels. As in the
real APEnet board the buffers of the virtual channels are only replicated on the
receiving side. This strategy does not change the behaviour of the virtual channels:
the router takes care of forwarding only flits that have free space on the receiving RX
buffer. Figure 3.3 depicts the internal structure of a three-virtual-channel module.

Consumer

This module combines into a single entity the functionality of a consumer and
a producer, so it has one consumer interfaces to the RX FIFO and one producer
interface to TX FIFO. The module pops all the messages in the RX queue as soon as
they are available, the incoming messages handling function provides only statistics
generation and keeps popping messages from the buffer, it can be overridden to
provide a more specific traffic handling.

The injection of new packets into the network can be done in two different ways:

• injecting a packet directly into the FIFO;

• injecting a packet using an internal “software” queue.

The first procedure can fail if there is not enough room available into the buffer, the
use of the internal soft buffer is recommended to avoid blocking the consumer and
because it gives a more realistic environment. The TX and RX FIFOs are a repre-
sentation of the hardware buffers on the Network Interface Card (NIC) itself, the
soft queue can be seen as a software buffer inside of the compute unit. Scheduling
new packets uses an intermediate class (Packet_info) which contains all the infor-
mation required to generate the full network packet. To generate the real packet
for a specific topology the virtual function generating the header must be defined
in the specialization class for that given topology.

Router

This module has all the required gates to connect with an arbitrary number of
external ports using Channel logic modules and an arbitrary number of internal
ports using Consumer and Buffer modules. The Router takes care of forwarding

3.4 Implementation of the simulator 37

Start rescan

Check selected port

VCT
conditions

met?
Forward header

Ports
completed? Select next port

End rescan

yes

no

yes

no

Figure 3.4. Flowchart of the port rescan of the router. This cycle through all the output
ports for headers ready to send.

all the incoming packets to their next destination, according to the selected routing
algorithm, and avoiding local and remote buffer overflow. Every time a new header
is popped from one of the RX FIFOs it is stored into a dedicated slot, one for every
input channel. The routing function is called to get the correct output port for the
packet. The routing function is implemented as a pure virtual function in the C++
code and it must be implemented in the specialized version of the Router class. After
the port selection, a request is issued to the arbitration system. Concurrent requests
are handled using priority queues to offer the possibility of traffic prioritization in
the future, the default priority algorithm is just a FIFO one based on the arrival
time of the header, different ones can be implemented in order to experiment with
QoS.

The Router checks the request queues for all the ports for packets that can be
forwarded as depicted in Figure 3.4. A packet can be forwarded only if it matches
all the constraints imposed by the VCT routing schema explained in § 2.5.3. If
one or more of this conditions are false the packet is blocked until the congestion
is over. If all these conditions are true then the port is assigned to that packet
and all the subsequent flits will follow the header as soon as they are available.
After forwarding the footer the channel is freed and it becomes available to the
next packet. Because of the event driven nature of the simulation the scan of the
requests queues is triggered every time a new event may change the status of one of
the conditions. Table 3.1 indicates all the incoming events that triggers a request
rescan.

3.4 Implementation of the simulator 38

Table 3.1. Events that triggers an output port queue rescan because the may alter the
VCT conditions for a queueing packet.

Incoming event Possible effect on the VCT
conditions

New incoming header The requested channel may be available

New incoming footer One channel is now free for other
packets

Local TX FIFO occupancy update The local TX FIFO may now have
enough room for the next packet

Remote RX FIFO occupancy update The remote RX FIFO may now have
enough room for the next packet

Figure 3.5. Internal structure of a 2D-torus node. The 4 external ports required by
the topology are implemented using Channel logic modules, the internal port uses a
Consumer module and two Buffer modules for the hardware buffering. The Router
module in the middle provides routing functionality between the ports.

3.4.3 Torus topology implementation

In this section we will discuss how to implement a torus network using the VCT
simulation library.

Building the network

First we need to build a node for the network. An N-dimensional torus node as 2N
bidirectional ports connected to the first neighbours and an internal port connected
to the local compute unit, the interconnection between those ports is provided by a
router with 2N external ports and one internal port. Figure 3.5 shows the internal
structure of a 2D torus node. To connect all the nodes and create a torus topology
we need to create a network of nodes using the NED language. As an example of
NED use, listings 3.1 and 3.2 show respectively the connections for a 2D and a 3D
tori, the nodes are instantiated as an unidimensional array which is then treated as

3.4 Implementation of the simulator 39

Listing 3.1. NED connections for a 2D tourus.
1 connections:
2 for i=0..(rows−1), for j=0..(columns−1) {
3 node[i∗columns+j].gate[0] <−−> Channel <−−> node[i∗columns+(j+1)%

columns].gate[1];
4 node[i∗columns+j].gate[2] <−−> Channel <−−> node[((i+1)%rows)∗

columns+j].gate[3];
5 }

Listing 3.2. NED connections for a 3D tourus.
1 connections:
2 for x=0..(x_max−1), for y=0..(y_max−1), for z=0..(z_max−1){
3 node[x + y∗x_max + z∗x_max∗y_max].gate[0] <−−> Channel <−−> node

[(x+1)%x_max + y∗x_max + z∗x_max∗y_max].gate[1];
4 node[x + y∗x_max + z∗x_max∗y_max].gate[2] <−−> Channel <−−> node

[x + ((y+1)%y_max)∗x_max + z∗x_max∗y_max].gate[3];
5 node[x + y∗x_max + z∗x_max∗y_max].gate[4] <−−> Channel <−−> node

[x + y∗x_max + ((z+1)%z_max)∗x_max∗y_max].gate[5];
6 }

a multidimensional one.

Expanding the library for tori

In order to implement a torus topology we need to expand the VCT simulation
library providing topology specialized Router and Consumer modules. Those mod-
ules must be capable of determining positions of nodes on the network therefore we
need to specify an address system, for an N-dimensional torus the obvious choice
is to use Cartesian coordinates to identify the position of the nodes. Because the
nodes are declared in the NED network as an unidimensional array we need to pro-
vide a conversion function from array indexes to network coordinates to allow any
Router and Consumer to establish its own coordinates; if we want to take advantage
of the templated Consumers we need to provide a conversion function for network
coordinates to indexes. For a three dimensional torus the conversion equations are
the following:

x = index%xmax (3.1)
y = (index/xmax) %ymax (3.2)
z = index/ (xmaxymax) (3.3)

index = x+ yxmax + zxmaxymax (3.4)

All the operations are performed on integer numbers so the / and the % operators
represents integer division and modulo respectively.

3.4 Implementation of the simulator 40

Implementing routing algorithms

The algorithms implemented for N-dimensional tori are the ones presented in § 2.7,
in this section only technical details related to the actual implementation will be
discussed.

All the algorithms need to calculate the shortest path to the destination on
a given dimension and to correctly identify packets that have already crossed the
boundaries of the network. To calculate the shortest path direction we can check
if the distance between the current node and the destination is smaller than the
size of the torus divided by two. In the x dimension if we call xp the destination
coordinate of the packet and xn the coordinate of the node, the shortest path is in
the + direction if this condition is true:(

(xp ≤ xn) ∧
(
|xp − xn| ≤

xmax
2

))
∨
(

(xp > xn) ∧
(
|xp − xn| >

xmax
2

))
(3.5)

This condition can be used in all the other dimensions by changing the coordinates
to the appropriate ones.

In order to correctly identify packets that have crossed the network boundaries
in direction + (−) we could check if the source coordinate is smaller (greater) than
the coordinate of the node. This condition can be used only if we assume that
packets use only minimal paths, therefore it is not valid if we want to implement
non minimal algorithms. To correctly identify the packets in both minimal and non
minimal conditions we can add a special field into the packet header which contains
this information.

3.4.4 Fully connected dragonfly topology implementation

In this section we will discuss how to implement a direct fully connected dragonfly
network using the VCT simulation library.

Building the network

To implement a dragonfly topology we need groups, routers and nodes. Because
we want to create a direct network version of the dragonfly we combine routers
and nodes in a single entity called node, every node has a number of internally
connected endpoints identified by a port. To build this network topology using
OMNeT++ we need to create two compound modules one for the groups and one
for the nodes and then connect them using a fully connected topology. Figure 3.6a
and Figure 3.6b depicts the internal structure of the group and node compound
modules respectively. The number of external and internal ports of a dragonfly
node are determined by the parameters introduced in § 2.2.2. The parameters can
be modified in order to generate different network configurations and to evaluate
the behaviour of the topology.

The fully connected topology can be described using the NED language in a
parametric way as shown in listings 3.3 and 3.4 for connections within a group and
between groups respectively.

3.4 Implementation of the simulator 41

(a) Example of the group compound
module

(b) Example of the node compound
module

Figure 3.6. Internal structure of the group and node compound modules for 72 nodes
fully connected dragonfly.

Listing 3.3. NED intra-groups connections for a fully connected dragonfly.
1 connections:
2 for k=0..(nodes_in_group−1), for j=0..((groups−1)/nodes_in_group)

−1 {
3 gate++ <−−> nodes[k].gate[j];
4 }
5
6 for k=0..(nodes_in_group−1), for j=((groups−1)/nodes_in_group)..((

groups−1)/nodes_in_group)+nodes_in_group−1 {
7 nodes[k].gate[j−1] <−−> Channel <−−> nodes[j−((groups−1)

/nodes_in_group)].gate[k+(groups−1)/nodes_in_group] if (
j−((groups−1)/nodes_in_group))>k;

8 }

Listing 3.4. NED inter-groups connections for a fully connected dragonfly.
1 connections:
2 for k = 0..groups−1, for j = 0..groups−1{
3 groups_modules[k].gate[j−1] <−−> Channel <−−>

groups_modules[j].gate[k] if j>k;
4 }

3.4 Implementation of the simulator 42

Expanding the library for dragonflies

We need to expand the topology unaware VCT library and to specialize the Router
and Consumer classes for fully connected dragonfly topology. As we did for N-
dimensional tori, we need to specify an addressing system to identify in a unique
way all the nodes in the network. The dragonfly topology has a 3 level hierarchical
structure therefore an effective and smart way of identifying the nodes is to use
three integer indexes one for the group, one for node inside the group and one for
the internal port in the node. The network is built using an array of groups and
every group has internally an array of nodes, every node can determine its position
in the network by using the indexes of the two arrays as group and node index.

In order to take advantage of the templated consumer library, we need to provide
conversion functions between network coordinates and global network indexes. A
possible mapping can be described by the following equations:

g = index/ (nmaxpmax) (3.6)
n = (index% (nmaxpmax)) /pmax (3.7)
p = index%pmax (3.8)

index = p+ npmax + gpmaxnmax (3.9)

Where g, n and p represents group, node and port indexes respectively. All the
operations are performed on integer numbers so the / and the % operators represents
integer division and modulo respectively.

Implementing routing algorithms

The algorithm implemented for fully connected dragonflies is the one presented in §
2.7, and in this section, only technical details related to the actual implementation
will be discussed.

The full routing problem can be decomposed into routing packets on a fully
connected topology, which can be easily achieved by using this pseudo code:

1 if (index > ref_index)
2 result = index − 1;
3 else
4 result = index;

Where index is the destination coordinate and ref_index is the current node coor-
dinate.

For a packet with a different g index the routing function must be able to
determine if the packet needs to be routed in the local or directly into the global
one. This decision can be made by checking if the resulting port belongs to the
current node or not. Packets arriving from different groups must use a dedicated
virtual channel to avoid deadlock.

3.4.5 Consumers implementation

In this section we will discuss the implementation of specific packet injector used
to characterize the different networks configurations. The traffic generator are spe-

3.4 Implementation of the simulator 43

cialization of the Consumer class presented in § 3.4.2 and they use global indexes
to address nodes in different network topologies.

The traffic injectors provided offer synthetic and real-world packet generation
to characterize and optimize networks for different workloads. In particular we can
use different uniform traffic injectors, a ping-like probe sender and DPSNN traffic
handler.

Uniform traffic injector

This traffic injector sends random packets at a fixed bandwidth. All the packets
have a random size and they are sent to randomly selected nodes at an adeguate
frequency to maintain the selected bandwidth. The pseudo random number gen-
erator uses the Mersenne Twister algorithm implemented inside the OMNeT++
framework, this generator has a period of 219937 − 1 and 623-dimension equidistri-
bution property [29]. The packets are sent using the software queue therefore, if a
network congestion occurs, the effective injected bandwidth may be lower that the
selected one. This traffic pattern is very useful to characterize networks against a
non specific application.

Uniform constant packet number injector

This synthetic traffic generator simulates the behaviour of an application producing
a random uniform traffic. In a real application a packet is usually sent after receiving
some information from other nodes; to mimic this traffic pattern the injector sends
a new packet every time a packet is received. The new packet is sent to a random
destination and it has a random size, while random numbers are generated using the
Mersenne Twister algorithm between the minimum and maximum values allowed.
At the beginning of the simulation every node sends a fixed number of packets
to random destinations, the number of packets injected by every node into the
network can be configured using a parameter to generate variable traffic conditions.
The effective behaviour of this injector is to keep constant the number of packets
travelling over the network.

Ping traffic injector

This traffic injector can be used to measure the latency between a couple of selected
nodes called source and sink. The source sends packets minimum size packets to
the sink at a fixed rate, the sink calculates the latency of the received packets. This
generator tags the probe packets to distinguish them, this makes possible to other
traffic generator below this one to study how other traffic can affect latency between
two point. It must be noted that the latency between fixed points of the network
is a local observable and it changes significantly over time, therefore it cannot be
used to fully characterize a network configuration. Nevertheless it can be useful to
measure the latency on critical paths of the system.

3.4 Implementation of the simulator 44

DPSNN traffic injector

This traffic reproduces the traffic generated by the DPSNN application described
in § 1.3. To reproduce the application behaviour the traffic injector uses a trace
file containing the number of spikes sent by the MPI processes at every simulation
iteration. The injector reproduces all the simulation iterations of the file and keeps
the nodes synchronized emulating the real application.

Every simulation step of the application can be simplified as follows:

1. MPI barrier2 to sync all the nodes

2. Every node sends and receives spikes using MPI alltoallv

3. Every node processes and calculates the next step

This simplified schema is effective for simulating the network traffic generated by
the application and it requires the implementation of two communication patterns:
barrier and alltoallv. In order to implement the simulation cycle in an event driven
simulation like OMNeT++ we can use a Finite State Machine (FSM) which uses the
three states defined previously. We can divide the states into two classes: network
driven states and time states. A network driven state is a state which needs to
receive a certain amount of packets in order to be completed. A time driven state is
completed after a certain amount of time. The calculation state is a time one while
all the others are network states. A time state can be easily implemented using a self
scheduled message which triggers the update of the FSM when received. Network
states are more complex and need a different implementation. When the module
enters into a network state we need to track down the number of expected packets
from every node, this can be easily done using an associative array, every time a
packet is received we can decrease the number of expected packets from that given
node. This first naive proposal could work if all the different nodes change state
in a synchronous way but, because we do not have any external control over the
global state of the nodes, we have to expect packets from different states at the same
time, therefore we need to flag packets according to their state. Received packets
belonging to a different state are saved into a buffer system on the Consumer itself
to avoid loosing information. Packets into the buffer system are then recovered
every time the FSM changes states into a new network one. We can summarize the
general structure of a network state as follows:

1. All the outgoing packets are sent using the "software" buffer of the consumer

2. The number of expected packets from every node is stored into the associative
array

3. The packets belonging to the current state are recovered from the buffer sys-
tem

4. All the received packets for the current state are counted, the others are saved
into the buffer system

2The barrier is not needed by the application itself but it is useful if we want to profile the
different part of the application

3.4 Implementation of the simulator 45

5. When the number of expected packets is zero the machine transitions into the
next state

The next step is to implement the network traffic pattern of the MPI [30] func-
tions used by the DPSNN simulation: barrier and alltoallv. The barrier function
synchronizes all the MPI processes of the network exchanging packets between the
nodes, the OpenMPI’s implementation of the barrier function uses a root node
approach and can be described by the the following steps:

1. All the nodes but the root one send a packet to the root node signalling that
they reached the barrier

2. The root node waits for one packet from every node

3. When it receives all the packets the root node sends an acknowledgement to
the nodes and releases the barrier

4. All the nodes leave the barrier after receiving the ack from the root node

The root node must be correctly identified by all the nodes, in this implementation
we use the node with index zero as root node. For large networks this communication
scheme is not effective because it induces congestion in the root node, to mitigate
this effect we can use a hierarchical structure of local and global root nodes: every
node sends the barrier packet to the local root node, the local root node send on
barrier packet to the global one after receiving all the barrier packets, the global
root node sends the barrier ack to the local root nodes and the local root nodes
propagates the ack to their local nodes.

This schema of communication can be implemented in the network state machine
paradigm defined before by using two network states: MPI_BARRIER_SEND and
MPI_BARRIER_ACK. In the MPI_BARRIER_SEND state all the nodes sends a
packet to the root node and do not wait for any packet, the root node waits for one
packet from every node and does not send any one. In the MPI_BARRIER_ACK
state all the nodes waits for one packet from the root node while the root node
sends one packet to every node.

In the alltoallv every node sends packets to the other nodes and waits for packets
from other nodes, therefore this communication pattern can be mapped using one
network state. The user must specify the number of packets to send and receive and
size of every packet, this is done by using vectors. If the number of packet is zero the
send or the receive is skipped. Every cycle of the DPSNN uses two different alltoallv
one for sending the number of spikes and one for sending the actual spikes, therefore
two network states will be used to implement the two different communications.

The time spent by the application to calculate the next state of the neurons
inside the process can be considered proportional to the number of spikes received,
the average calculation time per single spike can be estimated by profiling the real
application. The processing time can change drastically by changing the under-
ling computing hardware, nevertheless we can still compare different networking
solutions.

46

Chapter 4

Selection and analysis of simulations and
benchmarks

The benchmarking and characterization of an interconnection network is difficult
due to the behaviour of the network. It is very susceptible to: the traffic pattern,
the size of the buffers, the size of the network, the number of virtual channels
and many other parameters. In this chapter we will define the standard metrics
used for benchmarking networks, we will discuss the results for different networks
configuration using synthetic benchmarks and we will evaluate the performances
using the DPSNN traffic.

4.1 Metrics for an interconnection network
The most used metrics for an interconnection network are latency and accepted
traffic.

Latency is defined as the time elapsed from the beginning of the packet trans-
mission and the receive of the message at the destination node. This definition can
be interpreted in different way according according to the context: if we consider
a complete system with all the software stack implemented the latency will include
all the time spent into the different software layers; on the other hand, if we want to
characterize raw network performances, only the time spent into the network will
be taken into account. Because we are benchmarking low level implementation of
networking hardware we will not add the consumer soft queue time into the packet
latency. It is important to note that the goal of the simulations performed in this
thesis is not to give a good modelling of the software stack or the system bus in-
terfacing the network hardware to the processor, so adding the soft queue delay to
the latency will not provide a correct modelling of the real application latency.

Latency changes from packet to packet because it takes into account: the dis-
tance between source and destination, the size of the packet and the congestion
of the network. The value for a single packet is not meaningful, especially if we
consider a synthetic traffic pattern; so we used the average value to give a global
picture of the network behaviour. The standard deviation of the latency is also
important to get an indication of when the network is heavily congested.

Accepted traffic or throughput is defined as the amount of information deliv-
ered by the network per time unit. Because the amount of information delivered

4.2 Performance plots 47

Table 4.1. Server characteristics.

CPU 2 x Intel Xeon CPU E5620 @ 2.40 GHz
Memory 48 GB
Network card Mellanox MT26428 Connectx2
OpenMPI version 1.10.3
Linux version CentOS 7.2 kernel 3.10.0-327.22.2

depends on the number of nodes and the bandwidth per node this this value must
be normalized in order to compare different network configurations. In our test
configurations, since the bandwidth to and from every node does not change, we
normalize the accepted traffic dividing it by the number of nodes in the network.

It is important to note the difference between applied load and accepted traffic:
the first is an input parameter of the simulation and determines the amount of data
injected into the network; the latter is an output of the simulation and determines
the amount of data delivered by the network.

4.2 Performance plots
There are two different standards for the visual representation of the performance
plots: Chaos Normal Form (CNF) and Burton Normal Form (BNF).

The CNF method uses two different graphs one for accepted traffic vs normalized
applied load and one for latency vs normalized applied load. The use of two plots
makes the results more readable and they show a clear picture of network behaviour
before and after saturation.

The BNF method uses a single combined plot of latency vs accepted traffic.
Because the accepted traffic is not an independent variable the resulting plot may
not be a function, resulting in a more complex visualization.

The results of this thesis will be presented using the CNF method because it is
more readable.

4.3 Application scaling
Before testing the performances of the simulated networks it is interesting to test
the scaling of the simulator on a commodity cluster: the computing platform used
is based on intel CPUs and mellanox network interfaces, the full hardware/software
configuration is shown in Table 4.1.

The scaling test has been performed on a 2D torus 96x96 and the results are
shown in Figure 4.1. The performance speedup of the application is very promising
and close to the theoretical one: the simulation running on 96 processes achieves the
81% of the theoretical limit. This good performance is due to the highly optimized
OMNeT++ MPI implementation and to the short range communication of the
torus.

4.4 Synthetic tests 48

	100

	1000

	10000

	100000

	0 	10 	20 	30 	40 	50 	60 	70 	80 	90 	100
	0

	10

	20

	30

	40

	50

	60

	70

	80

	90

	100

Ex
ec
ut
ion

	ti
m
e	
[s]

Sp
ee
du
p

Number	of	processes

Scaling	of	the	simulator	on	a	96x96	2D	torus

execution	time
speedup

Theoretical	speedup

Figure 4.1. Scaling of the simulator for a 96x96 2D torus using MPI.

4.4 Synthetic tests
As a first evaluation of the network performance we use synthetic benchmarks on
different network configurations. The traffic generator used for this first test is the
random uniform consumer described in § 3.4.5.

The tests where performed for 2D, 3D tori and dragonfly in the following con-
figurations:

Network topology routing algorithm
2D torus 10x10 e-cube, star-channel, smart dim-order
2D torus 32x32 e-cube, star-channel, smart dim-order

3D torus 10x10x10 e-cube, star-channel, smart dim-order
Fully connected dragonfly 72 nodes min-routing

Fully connected dragonfly 1056 nodes min-routing

The results of the CNF plots for the accepted traffic and latency are shown in
Figure 4.2 and 4.3 respectively.

4.4.1 Accepted traffic

The analysis of the accepted traffic plot shows a linear region common to all the
different network configurations tested. When the network is in the linear region it
is below its critical congestion point and can handle properly the incoming traffic,
enhancing the applied load results in higher accepted traffic. If the applied load is
above the saturation point the accepted traffic starts to exit from the linear region
of the plot and becomes flat. It is important to note that the plateau value may
not be the maximum value that the network can deliver, this is more visible in
the 32x32 torus with a drop of almost a factor two between the maximum and

4.4 Synthetic tests 49

 0

 2x107

 4x107

 6x107

 8x107

 1x108

 1.2x108

 0 10 20 30 40 50 60 70 80 90 100

N
o

rm
a

li
ze

d
 a

cc
e

p
te

d
 t

ra
ffi

c

Normalized applied load [%]

Normalized accepted traffic vs Normalized applied load

torus 10x10 e-cube
torus 10x10 smart

torus 10x10 star channel
torus 32x32 e-cube
torus 32x32 smart

torus 32x32 star channel

torus 10x10x10 e-cube
torus 10x10x10 smart

torus 10x10x10 * channel
dragonfly 72 nodes min-routing

dragonfly 1056 nodes min-routing

Figure 4.2. Normalized accepted throughput vs applied load for the different configuration
tested.

the plateau. This performance drop is due to higher pressure applied to network
infrastructure resulting in packets stealing resources each other. in order to reduce
this back-pressure effect a possible solution is to apply throttling techniques, which
limits the applied traffic, in order to prevent an oversaturation of the network.

4.4.2 Latency

The latency graph shows a similar picture with an increasing trend while the ap-
plied load increases and a sudden jump of about one order of magnitude after the
network reaches saturation. It is important to note that even if the network is not
saturated and the accepted traffic has not reach the limit yet, latency is increasing
together with the applied load leading in longer delivery time for the packets. This
aspect must be taken into account when designing the system in order to met the
requirements.

4.4.3 Comparison of tori

The different network topologies tested react differently to the applied traffic reach-
ing different levels of saturation for both throughput and latency. The two 2D tori
show how this simple topology can handle 40-50% normalized applied load in a
10x10 network configuration, but only 15-20% in a 32x32 configuration. Tori and
meshes are not optimized for uniform network traffic because of their small set of
neighbour nodes, and when the network radius goes from 10 (for the 10x10) con-
figuration to 32 (for the 32x32 one) the effect on performances is clearly evident.

4.4 Synthetic tests 50

1e-06

1e-05

1e-04

1e-03

 0 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 p

a
ck

e
t

la
te

n
cy

 [
s]

Normalized applied load [%]

Packet latency vs Normalized applied load

torus 10x10 e-cube
torus 10x10 smart

torus 10x10 star channel
torus 32x32 e-cube
torus 32x32 smart

torus 32x32 star channel

torus 10x10x10 e-cube
torus 10x10x10 smart

torus 10x10x10 star channel
dragonfly 72 nodes min-routing

dragonfly 1056 nodes min-routing

Figure 4.3. Latency vs applied load for the different configuration tested.

In order to reduce the network radius while keeping the same kind of topology we
can move from a 2D to a 3D torus. The 10x10x10 3D torus tested reaches results
similar to the 10x10 one for both accepted traffic and latency, while having almost
the same number of nodes of the 32x32 network.

4.4.4 Comparison of routing algorithms

For the configurations tested, the use of the fully adaptive star-channel routing
algorithm provides a better use of the available network resources resulting in higher
sustained loads and lower latency than the ones achievable by using the simpler e-
cube routing.

The smart dimension-order routing function does not provide significant im-
provements over the standard dimension ordering and leads to performance degra-
dation in certain configurations. The main problem with this algorithm is the lack
of global knowledge regarding the network state and the limited adaptivity pro-
vided by reusing wasted resources. The rationale behind the algorithm is to avoid
hot spots of network congestion in specific dimension by misrouting the packet in
a different one; in a uniformly loaded network, hot spots are less likely to occur
therefore using non minimal paths to avoid them it is not a good strategy.

4.4.5 Evaluation of dragonfly

The fully connected dragonfly shows good performances in the two configuration
tested. The configuration with 72 end nodes performs better than tori with the
fully adaptive algorithm, while the 1056 configuration shows better performances

4.5 DPSNN testing 51

	0

	0.05

	0.1

	0.15

	0.2

	0.25

	0 	0.5 	1 	1.5 	2 	2.5

La
te
nc

y	[
m
s]

Time	[s]

Latency	vs	time	in	a	12x12	2D	torus	for	the	DPSNN	traffic

latency

Figure 4.4. Latency of the received packets during a 12x12 processes DPSNN simulation
mapped onto a 12x12 torus.

than the non adaptive tori but lesser accepted traffic that the fully adaptive ones. It
must be noted that the fully connected dragonfly is an higher degree/radix network
than the comparable size torus, so the 72 nodes dragonfly requires routers with 5
external and 2 internal ports while the 1056 nodes one requires 11 external and 4
internal ports. On the other hand the 10x10 and the 10x10x10 tori require 4 and
6 external ports respectively and only one internal port. We can say that building
direct network’s nodes with an high port count is a difficult task and there are
strong limits imposed by the technology available.

4.5 DPSNN testing
The traffic generated by the current release of the DPSNN is not particularly de-
manding in terms of throughput: the data structure that represents an axonal spike
is only 12 bytes and evolving the neuronal dynamic produces temporal intervals
between the sends. The real challenges with this application are the bursty nature
of the traffic and the low latency requirements.

To analyse the performance of different network configurations with the DPSNN
traffic we cannot use CNF plots because we cannot adjust the applied load. To char-
acterize the behaviour of the network we can do a time-based application profiling
based on the time spent by the consumer state machine in each state of the simu-
lation.

Before profiling the application it is useful to look at shape of the network traf-
fic over time. Figure 4.4 depicts the latency of the received packets vs time during
the DPSNN simulation of a 12x12 cortical column matrix divided into 144 MPI
processes mapped onto a 12x12 torus. As we can clearly see from the plot, the

4.5 DPSNN testing 52

	0

	0.05

	0.1

	0.15

	0.2

	0.25

	0.655 	0.66 	0.665 	0.67 	0.675 	0.68

La
te
nc
y	[
m
s]

Time	[s]

Latency	vs	time	in	a	12x12	2D	torus	for	the	DPSNN	traffic

latency

Figure 4.5. Latency of the received packets during a 12x12 processes DPSNN simulation
mapped onto a 12x12 torus around a single spike.

-0.15

-0.1

-0.05

	0

	0.05

	0.1

	0.15

	0.2

	0 	2 	4 	6 	8 	10 	12 	14

Tim
e	

di
ffe

re
nc

e	
[m

s]

Spike	number

Spike	suration	time	difference	from	e-cube

smart	dim-order star	channel

Figure 4.6. Time difference between the dimension order and other routing algorithms.

4.5 DPSNN testing 53

Table 4.2. Different DPSNN configuration tested.

of columns Column X Column Y Columns/Process Neurons
288 16 18 4 357120
576 32 18 8 714240
576 16 36 8 714240

Table 4.3. Network performance difference relative to the 2D torus with the e-cube routing
algorithm.

Configuration 2D torus
star-channel

2D torus smart
dimension-order

dragonfly
min-routing

16x18 12.4% -4.6% -30.3%
32x18 19.7% 0.66% -10.0%
16x36 24.1% 3.6% -67.1%

bursty nature of the traffic is confirmed by the simulation, and this traffic shape
is generating congestion resulting in high latency value measured during the traffic
spikes. Figure 4.5 shows a more detailed view of one of the spikes revealing the
real shape of the traffic: in the first part we have low latency and therefore no
congestion; in the second part we have a sudden increase of the latency which
drops rapidly creating a spike. This behaviour can be explained by analysing
the flow of the application: in the first part the nodes are transitioning from
the CALC state to the MPI_BARRIER_SEND one sending the MPI_BARRIER
packets to the root node; when the root node receives all the packets it sends the
MPI_BARRIER_ACK packets triggering the transition to the send/receive of the
synaptic spikes generating high traffic and congestion into the network.

As a preliminary study, we measured the amount of time needed to process each
of the spikes shows in Figure 4.4 for different routing algorithms. Figure 4.6 shows
the difference in time between the reference e-cube algorithm and the other two
available for tori. The star-channel algorithm shows a reduction in the time needed
by the network to deliver the packets leading to a total improvement of 458µs. The
smart dimension order offers marginal benefits under certain circumstances but the
total time difference is −452µs. From this results we should expect an improvement
of ∼ 8% for the star-channel algorithm and a performance degradation of ∼ 5%
using the smart dimension ordering.

The full profiling of 10 seconds of neural simulation, i. e. 10000 cycles of the
DPSNN algorithm, shows a reduction in the total time spent in the send/receive
spike of 9.5% by using the star-channel algorithm instead of the e-cube. If we use
the smart dimension order the time spent is increased by 6.0%.

The next step is to test different DPSNN configurations with a different num-
ber of column per process on all the available configurations in order to evaluate
the difference in performances with the scaling of the simulation size. The results
presented are obtained from the global profiling of 5 seconds of neural simulation
mapped onto 72 processes. The details of the configurations are presented in Table
4.2 and the results in Table 4.3.

The fully adaptive routing algorithm provides solid improvements in all the con-

4.5 DPSNN testing 54

figuration tested, showing a superior capability to handle the bursty traffic produced
by the DPSNN. The smart dimension-order has an oscillating behaviour providing
small fluctuations around the e-cube performances. The dragonfly topology is not
handling properly the traffic produced by the neural simulation despite its lower
radius and higher connectivity, this problem is probably originated by congestion
of the global channels. The communication generated by the DPSNN is based on
the distance between neuronal columns, as discussed in § 1.3.3, due to the high
regularity of a torus network the distance between columns is highly correlated
with the distance on the network; on the other hand the dragonfly topology has
a hierarchical structure resulting in discontinuous mapping between column and
network distance. This intrinsic characteristic of the dragonfly topology produces
unbalanced local and global network traffic resulting in extra congestion.

55

Chapter 5

Conclusion and future work

In this thesis we have discussed the progress made by HPC in the last decades
and we have introduced an interesting scientific application challenge: the DPSNN.
We reached the conclusion that the design of a large scale interconnection system
requires software simulations, in order to optimize the infrastructure and meet the
design requirements.

Since there are no exascale-size systems available now, software simulations be-
came more and more critical. Nobody can predict the behaviour of system as
complex as next generation HPC infrastructure, especially because there are no
real world data available for making any useful prediction. The investment in terms
of economical and human resources required by a project like ExaNeSt1 makes un-
certain performances unacceptable, therefore using a flexible scalable and accurate
simulator is mandatory. The one developed in this thesis fits perfectly with the
requirements and it will be used to explore network solution within the ExaNeSt
European project, providing a useful instrument in the early design stages. Thanks
to the flexibility offered by the implemented simulator the space of all the possible
network configurations can be deeply explored selecting: optimal partitioning of
the system, good balance between network connectivity and performances, efficient
routing algorithms and optimal overall use of the available resources.

From the implementation point of view, we have developed a low level scalable
simulator of the APEnet/APElink network protocol using the OMNeT++ frame-
work. This simulator is modular and flexible and allows benchmarking of different
network configurations using both synthetic and real application traffic. Differ-
ent network configuration has been tested using the simulation software obtaining
interesting results summarized in the list below:

• N-dimensional tori can successfully sustain uniform traffic, so in large scale
systems the use of higher dimension tori helps with the increasing radius;

• Fully adaptive algorithms provide a substantial increase in performances and
should be used to achieve optimal performances;

• Non minimal routing algorithms with limited adaptivity do not provide sig-
nificant advantages;

1The ExaNeSt project has a budget of 8.44 M€

56

• The Dragonfly topology is capable of good performances under uniform load
providing good throughput and latency;

• The DPSNN traffic can be efficiently distributed on tori, especially if equipped
with fully adaptive routing algorithms, and it is inefficient on dragonflies.

Different network topologies and routing functions will be implemented and
tested in the future. An interesting test would be implementing adaptive routing
for the dragonfly topology and experimenting with non uniform queuing policies
and QoS. For the ExaNeSt project it is useful to test larger scale systems and
multi-tier topologies, for example a dragonfly connecting different tori.

From the simulator point of view implementing network acceleration for mul-
ticast/broadcast communications could be interesting for a future version of the
DPSNN. The actual implementation of the neural simulation uses the alltoallv to
send the neuronal spikes, a further optimization of the DPSNN may use multicast
sends. In order to get optimal performances the network should provide hardware
acceleration of the collectives, therefore reducing the number of packets sent at
every iteration generating less congestion into the network.

57

Bibliography

[1] G. E. Moore. “Cramming more components onto integrated circuits”. In: Elec-
tronics 38.8 (1965).

[2] Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. “The LINPACK Bench-
mark: past, present and future”. In: Concurrency and Computation: practice
and experience 15.9 (2003), pp. 803–820.

[3] Top 500 project. url: https://www.top500.org/.
[4] Gene M. Amdahl. “Validity of the Single Processor Approach to Achieving

Large Scale Computing Capabilities”. In: Proceedings of the April 18-20, 1967,
Spring Joint Computer Conference. AFIPS ’67 (Spring). Atlantic City, New
Jersey: ACM, 1967, pp. 483–485. doi: 10 . 1145 / 1465482 . 1465560. url:
http://doi.acm.org/10.1145/1465482.1465560.

[5] John L. Gustafson. “Reevaluating Amdahl’s Law”. In: Communications of the
ACM 31 (1988), pp. 532–533.

[6] A. J. Bernstein. “Analysis of Programs for Parallel Processing”. In: IEEE
Transactions on Electronic Computers EC-15.5 (1966), pp. 757–763. issn:
0367-7508. doi: 10.1109/PGEC.1966.264565.

[7] Pier Stanislao Paolucci et al. “Distributed simulation of polychronous and
plastic spiking neural networks: strong and weak scaling of a representative
mini-application benchmark executed on a small-scale commodity cluster”.
In: CoRR abs/1310.8478 (2013). url: http://arxiv.org/abs/1310.8478.

[8] Elena Pastorelli et al. “Impact of exponential long range and Gaussian short
range lateral connectivity on the distributed simulation of neural networks
including up to 30 billion synapses”. In: CoRR abs/1512.05264 (2015). url:
http://arxiv.org/abs/1512.05264.

[9] E. Pastorelli et al. “Scaling to 1024 software processes and hardware cores of
the distributed simulation of a spiking neural network including up to 20G
synapses”. In: ArXiv e-prints (Nov. 2015). arXiv: 1511.09325 [cs.DC].

[10] L. Lapicque. “Recherches quantitatives sur l’excitation électrique des nerfs
traitée comme une polarisation”. In: Journal de Physiologie et de Pathologie
Générale 9 (1907), 620–635.

[11] Guido Gigante, Maurizio Mattia, and Paolo Del Giudice. “Diverse Population-
Bursting Modes of Adapting Spiking Neurons”. In: Phys. Rev. Lett. 98 (14
2007), p. 148101. doi: 10.1103/PhysRevLett.98.148101. url: http://
link.aps.org/doi/10.1103/PhysRevLett.98.148101.

https://www.top500.org/
http://dx.doi.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560
http://dx.doi.org/10.1109/PGEC.1966.264565
http://arxiv.org/abs/1310.8478
http://arxiv.org/abs/1512.05264
http://arxiv.org/abs/1511.09325
http://dx.doi.org/10.1103/PhysRevLett.98.148101
http://link.aps.org/doi/10.1103/PhysRevLett.98.148101
http://link.aps.org/doi/10.1103/PhysRevLett.98.148101

Bibliography 58

[12] Jose Duato, Sudhakar Yalamanchili, and Ni Lionel. Interconnection Networks:
An Engineering Approach. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 2002. isbn: 1558608524.

[13] John Kim et al. “Technology-Driven, Highly-Scalable Dragonfly Topology”.
In: SIGARCH Comput. Archit. News 36.3 (June 2008), pp. 77–88. issn: 0163-
5964. doi: 10.1145/1394608.1382129. url: http://doi.acm.org/10.
1145/1394608.1382129.

[14] José Duato. “A Necessary and Sufficient Condition for Deadlock-Free Adap-
tive Routing in Wormhole Networks”. In: IEEE Trans. Parallel Distrib. Syst.
6.10 (Oct. 1995), pp. 1055–1067. issn: 1045-9219. doi: 10.1109/71.473515.
url: http://dx.doi.org/10.1109/71.473515.

[15] C.L Seitz and Wiliam J. Dally. “Deadlock-Free Message Routing in Mul-
tiprocessor Interconnection Networks”. In: IEEE Transactions on Computers
36.undefined (1987), pp. 547–553. issn: 0018-9340. doi: doi.ieeecomputersociety.
org/10.1109/TC.1987.1676939.

[16] W. J. Dally and C. L. Seitz. “Deadlock-Free Message Routing in Multiproces-
sor Interconnection Networks”. In: IEEE Transactions on Computers C-36.5
(1987), pp. 547–553. issn: 0018-9340. doi: 10.1109/TC.1987.1676939.

[17] Luis Gravano et al. “Adaptive Deadlock- and Livelock-Free Routing with All
Minimal Paths in Torus Networks”. In: IEEE Trans. Parallel Distrib. Syst.
5.12 (Dec. 1994), pp. 1233–1251. issn: 1045-9219. doi: 10.1109/71.334898.
url: http://dx.doi.org/10.1109/71.334898.

[18] M Katevenis et al. “The ExaNeSt Project: Interconnects, Storage, and Packag-
ing for Exascale Systems”. In: Digital System Design (DSD), 2016 Euromicro
Conference on. 2016.

[19] R Ammendola et al. “APEnet+: a 3D Torus network optimized for GPU-
based HPC Systems”. In: Journal of Physics: Conference Series 396.4 (2012),
p. 042059. url: http://stacks.iop.org/1742-6596/396/i=4/a=042059.

[20] R Ammendola et al. “APEnet+ 34 Gbps data transmission system and custom
transmission logic”. In: Journal of Instrumentation 8.12 (2013), p. C12022.
url: http://stacks.iop.org/1748-0221/8/i=12/a=C12022.

[21] Elias Weingärtner, Hendrik Vom Lehn, and Klaus Wehrle. “A Performance
Comparison of Recent Network Simulators”. In: Proceedings of the 2009 IEEE
International Conference on Communications. ICC’09. Dresden, Germany:
IEEE Press, 2009, pp. 1287–1291. isbn: 978-1-4244-3434-3. url: http://dl.
acm.org/citation.cfm?id=1817271.1817510.

[22] Atta ur Rehman Khan, Sardar Muhammad Bilal, and Mazliza Othman. “A
Performance Comparison of Network Simulators for Wireless Networks”. In:
CoRR abs/1307.4129 (2013). url: http://arxiv.org/abs/1307.4129.

[23] ns-3 consortium. url: https://www.nsnam.org/.
[24] J-sim project. url: https://sites.google.com/site/jsimofficial/.
[25] OMNeT++ project. url: https://omnetpp.org/.

http://dx.doi.org/10.1145/1394608.1382129
http://doi.acm.org/10.1145/1394608.1382129
http://doi.acm.org/10.1145/1394608.1382129
http://dx.doi.org/10.1109/71.473515
http://dx.doi.org/10.1109/71.473515
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/TC.1987.1676939
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/TC.1987.1676939
http://dx.doi.org/10.1109/TC.1987.1676939
http://dx.doi.org/10.1109/71.334898
http://dx.doi.org/10.1109/71.334898
http://stacks.iop.org/1742-6596/396/i=4/a=042059
http://stacks.iop.org/1748-0221/8/i=12/a=C12022
http://dl.acm.org/citation.cfm?id=1817271.1817510
http://dl.acm.org/citation.cfm?id=1817271.1817510
http://arxiv.org/abs/1307.4129
https://www.nsnam.org/
https://sites.google.com/site/jsimofficial/
https://omnetpp.org/

Bibliography 59

[26] András Varga et al. “The OMNeT++ discrete event simulation system”. In:
Proceedings of the European simulation multiconference (ESM’2001). Vol. 9.
S 185. sn. 2001, p. 65.

[27] András Varga and Rudolf Hornig. “An overview of the OMNeT++ simu-
lation environment”. In: Proceedings of the 1st international conference on
Simulation tools and techniques for communications, networks and systems
& workshops. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering). 2008, p. 60.

[28] Y Sekercioglu, András Varga, and Gregory Egan. “Parallel simulation made
easy with OMNeT++”. In: The European Simulation Symposium (ESS 2003)(Alexan-
der Verbraeck 26 October 2003 to 29 October 2003). SCS European Publishing
House. 2003, pp. 493–499.

[29] Makoto Matsumoto and Takuji Nishimura. “Mersenne Twister: A 623-dimensionally
Equidistributed Uniform Pseudo-random Number Generator”. In:ACM Trans.
Model. Comput. Simul. 8.1 (Jan. 1998), pp. 3–30. issn: 1049-3301. doi: 10.
1145/272991.272995. url: http://doi.acm.org/10.1145/272991.272995.

[30] Message Passing Interface Forum. MPI: A Message-Passing Interface Stan-
dard Version 3.0. 2012. url: http://mpi-forum.org/docs/mpi-3.0/mpi30-
report.pdf.

http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1145/272991.272995
http://doi.acm.org/10.1145/272991.272995
http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

	Evolution and new frontiers of computational Physics
	Moore's law and the growth of computational power
	Software Complexity in parallel computing
	Amdahl's and Gustafson's law
	Dependencies
	Race conditions

	A case study: the DPSNN
	Modelling a neural network
	Spiking neuron model
	Connectivity model

	Interconnection networks
	Networks classification
	Network topologies
	N-Dimensional torus/mesh
	Dragonfly

	Router model
	Packet terminology
	Switching techniques
	Store and Forward (SAF)
	Wormhole
	Virtual-cut-through (VCT)

	Routing algorithms
	Virtual channels
	Deadlock
	Livelock

	Selected routing algorithms
	e-cube ecube
	star-channel starchannel
	Smart dimension-order
	Min-routing dragonfly

	Real world examples
	The ExaNeSt project
	The APEnet network

	Network simulation implementation
	Prototypes and simulations
	Selection of the simulation tool
	Selection and comparison of simulation frameworks
	ns-3
	J-sim
	OMNeT++
	Framework selection

	Implementation of the simulator
	General architecture
	VCT simulation library
	Torus topology implementation
	Fully connected dragonfly topology implementation
	Consumers implementation

	Selection and analysis of simulations and benchmarks
	Metrics for an interconnection network
	Performance plots
	Application scaling
	Synthetic tests
	Accepted traffic
	Latency
	Comparison of tori
	Comparison of routing algorithms
	Evaluation of dragonfly

	DPSNN testing

	Conclusion and future work

