APEnet+, a custom 3D Torus network for GPU-based computing systems: development status and performance improvements for host and GPU interface.

Piero Vicini - INFN Roma
ACAT2013 – Beijing May 2013
A little bit of history: from APE1 to apeNEXT

APE is a 25 years old project (!)

- MPP (APE1, APE100, APEmille, apeNEXT) & PC Cluster interconnection network (apeNET)
- FP Engine optimized for application + Smart dedicated 3D Torus interconnection network

APE1 (1988) 1GF, chipset Weitek

APE100 (1992) 25GF, SP, "Home made" VLSI processors

APEmille (1999) 128GF, SP, Complex Italy+France+Germany collaboration

apeNEXT (2004) 800GF, DP, Complex
A little bit of history: apeNET

- APEnet: PC Cluster 3-d torus network
 - Integrated routing and switching capabilities
 - High throughput, low latency, “light-weight” protocol
 - PCI Interface, 6 Links full-bidir on torus side

- History
 - 2003-2004: APEnet V3 (PCI-X)
 - 2005: APEnet V3+
 - same HW with RDMA API
 - 2006-2009: APEnet goes embedded
 - DNP, D(istributed) N(etwork) Processor
 - EU SHAPES project co-development
 - 2011: APEnet+
 - PCI Express, enhanced torus links
The (many) million dollars question....

Time changes but some facts are still true.

1) The hunger for floating point computing power remains unchanged
2) Towards the ExaFlops, main keywords remain unchanged
 • Floating Point Engines allowing efficient execution (i.e. high ratio flop/watt) of scientific applications -> high ratio flop/watt
 • Smart and efficient specialized interconnection system to scale up to systems made of huge number of computing nodes (100-10000-100000-....) -> 3D Torus network

Cray Gemini is a 3D Torus network quite similar to APE (sigh...)

3) NRE costs for custom developments of ASICS, systems, networks reached absurd high levels...

So the question is:
can we use commodities technologies to meet
the demands of computing power of modern scientific applications?

Piero Vicini – INFN Roma (piero.vicini@roma1.infn.it)
Peta(Exa)Flops scale enabling technologies: GPGPU

- **General Purpose Graphic Processing Unit**: impressive peak performance (N*TFlops per chip)
- Videogames market i.e. 10 G$/yr unified gaming and HPC chip architectures
- Architecture and characteristics fit with HPC scientific application (LQCD as an example...) requirements
 - Many-Core (>>100) SIMD-like architecture
 - High local memory bandwidth
 - 140 GB/s -> 500 GB/s
 - “Green” and cost effective
- Aggressive but (really!) feasible roadmap: much room for performance scaling
 - Easy peak performance scaling allowed by “tiled” architecture
 - New features added generation by generation....
 - Adoption of new technologies to improve performance

INTEL Westmere
- +many caches - few processing

NVidia Fermi GPU
- many computing units!!!

Nvidia VOLETA
- Est. 5x K20x performance
- 1 TB/s memory bandwidth
- New architectural improvements

Nvidia Fermi (Tesla 20xx)
- ~500 core, 1 TF SP, 0.5 TF DP
- 6 GB external memory (150 GB/s)

Nvidia Kepler (K20..)
- ~2500 CUDA core, >3x FP (4 TF(SP)/1.3TF (DP))
- 6 GB external memory (250 GB/s)

ECHELON: NVIDIA’s ExaScale Computing
- 128 SM (1024 core) 160 GFlops each, 20 TFlops aggregated
- Network: 150 GB/s; DRAM: 1.6TB/s

Piero Vicini – INFN Roma (piero.vicini@roma1.infn.it)
(Multi)PetaFlops scale enabling technologies: FPGA

- High-end FPGA-based systems are the ideal hardware to build custom network
- Most complex electronic devices leveraging on silicon process improving and state-of-the-art technologies

<table>
<thead>
<tr>
<th>1990s</th>
<th>2010s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glue Logic</td>
<td>Heterogeneous Capabilities</td>
</tr>
<tr>
<td>Flex 6000 3μm process</td>
<td>Stratix I 130nm process</td>
</tr>
<tr>
<td>Stratix IV 40nm process</td>
<td>Stratix V 28nm process</td>
</tr>
<tr>
<td>SoC FPGA 28nm process</td>
<td></td>
</tr>
</tbody>
</table>

- Current devices (28nm) sport Tflops, (multi)Terabits
 - I/O bandwidth, hardIP uP cores
 - Dual ARM @800MHz (!)
 - O(1) transceivers @28gbps, O(10) transceivers @10-14 gbps, O(100)100 transceivers @1-5 gbps
 - PCIe Gen3/2/1, 10G/40G/100G Ethernet, Serial RapidIO, CPRI (Fixed latency)
- Testbed for future interconnection technologies
 - Avago MicroPod up to 120gb/s full bidir
 - Proof of concept AVAG0 + Altera
 - ...Waiting for Optical on die

<table>
<thead>
<tr>
<th></th>
<th>ALTERA STRATIX V</th>
<th>XILINX VIRTEX 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic Cell (up to)</td>
<td>1.05M</td>
<td>1.9M</td>
</tr>
<tr>
<td>Registers (up to)</td>
<td>1.58M</td>
<td>2.4M</td>
</tr>
<tr>
<td>Peak transceiver speed (Gbps)</td>
<td>14.1</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>28.0</td>
<td>29.0</td>
</tr>
<tr>
<td>Device serial bandwidth (Gbps)</td>
<td>936</td>
<td>930</td>
</tr>
<tr>
<td>PCIe interface</td>
<td>up to 4 Gen3,x8</td>
<td>up to 4</td>
</tr>
<tr>
<td>Memory interfaces</td>
<td>up to 7 banks</td>
<td>DDR3 1.8Gbps</td>
</tr>
<tr>
<td>x72 DDR3@800Mhz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embedded Memory size</td>
<td>55 Mb</td>
<td>65 Mb</td>
</tr>
<tr>
<td>DSP elementary block</td>
<td>4096</td>
<td>3960</td>
</tr>
<tr>
<td>(Dual 18x18 Mul + 64bit Acc)</td>
<td>(25x18 Mul + 48bit Acc)</td>
<td></td>
</tr>
<tr>
<td>I/O pins</td>
<td>up to 1125 (+ dedicated transceiver pins)</td>
<td>up to 1200 (+ dedicated transceiver pins)</td>
</tr>
<tr>
<td>Hardened IP</td>
<td>NIOS (proprietary)</td>
<td>Dual ARM A9</td>
</tr>
<tr>
<td>ARM A9</td>
<td>MIPS32 (soft core)</td>
<td></td>
</tr>
</tbody>
</table>
APEnet+ at a glance

- 3D Torus network
 - ideal for large-scale scientific simulations (domain decomposition, stencil computation, ...)
 - scalable (APENET+ today up to 32K nodes)
 - Cost effective: no external switches! 1 card+3 cables

- APEnet based on INFN DNP
 - RDMA: Zero-copy RX & TX!
 - Small latency & high bandwidth
 - GPU clusters features (APEnet+):
 - RDMA support for GPUs! -> no buffer copies between GPU and host.
 - Very good GPU to GPU latency

- APEnet+ card:
 - FPGA based (ALTERA St.IV EP4SGX290)
 - 6 full-bidirectional links up to 68 Gbps raw (~400 Gbps)
 - PCIe X8 Gen2 in X16 slot
 - peak BW 4+4 GB/s
 - Network Processor, off-loading engine integrated in the FPGA
 - Zero-copy RDMA host interface
 - Direct GPU interface
 - Industry standard QSFP+ cabling
 - Copper (passive/active), optical

Piero Vicini – INFN Roma (piero.vicini@roma1.infn.it)
QUonG: GPU+3D Network FPGA-based

QUonG (QUantum chromodynamics ON Gpu) is a comprehensive initiative aiming to deploy an GPU-accelerated HPC hardware platform mainly devoted to theoretical physics computations.

• Heterogeneous cluster: PC mesh accelerated with high-end GPU (Nvidia) and interconnected via 3-D Torus network

• Added value:
 • tight integration between accelerators (GPU) and custom/reconfigurable network (DNP on FPGA) allows latency reduction and computing efficiency gain
 • Huge hardware resources in FPGA to integrate specific computing task accelerators
 • ASIP
 • OpenCL (in the future..)
 • Communicating with optimized custom interconnect (APEnet+), with a standard software stack (MPI, OpenMP, ...)
 • Optionally an augmented programming model (cuOS)
 • Community of researchers sharing codes and expertise (LQCD, GWA, Laser-plasma interactions, BioComputing, Complex systems,...)
QUonG assembly

QUonG quick recipe:
1) Take N PC cluster nodes and plug 1 APEnet+ card per node
2) Plug M GPUs per node
3) Connect 6 cables for APEnet+ first neigh. connections
Add service networks (IB,Eth,..) as you like and
serve it to the computational physicists....

• QUonG Hybrid Computing Node:
 • Intel Xeon E5620 double processor
 • 48 GB System Memory
 • 2 S2075 NVIDIA Fermi GPU
 • 1 APEnet+ board
 • 40 Gb/s InfiniBand Host Controller Adapter
• QUonG Elementary Mechanical Unit:
 • 3U Sandwich:
 • 2 Intel dual Xeon servers
 • 4 NVIDIA Tesla M2075 GPU
 • 2 Vertex on the APEnet+ 3d network
• Software Environment
 • CentOS 6.3
 • NVIDIA CUDA 4.2 driver and dev kit
 • OpenMPI and MVAPICH2 MPI available
• Q2 2013: 16 nodes connected by the APEnet+ (4x2x2)
• Addition of few Tflops of Kepler GPUs during 2013
APEnet+ performance improvements: howto...

Iterative process leveraging on architectural refinements of high performance programmable components (FPGA) driven by target applications benchmarking

The rationale is that PCIe “SW driver only” driven transactions are slow (~μS for register access) so HW support is mandatory to squeeze performances...

1) **Implementation of GPU Direct RDMA P2P** acceleration hardware to lower small packet latency and enhance accelerator (GPGPU) interface performance
2) **Integration of specific hardware blocks**
 1) “Turbo-Rx” TLB hardware for fast virtual to physics destination address translation: bottleneck for RDMA RX side bottleneck
 2) Multiple DMA engines and “multi-packet instantiator” logic to reduce overhead between subsequent PCIe transfer
GPU-P2P in APEnet+

APEnet+ is 1st non-NVidia device to implement Fermi P2P protocol

Peer-to-Peer means:
• Data exchange on the PCIe bus
• No bounce buffers on host

APEnet+ P2P support
• Cutting-edge HW/SW technologies developed jointly with Nvidia
 • APEnet+ board acts as a peer
 • APEnet+ board can read/write "directly" GPU memory

Direct GPU access
• Specialized APEnet+ HW block
• GPU initiated TX
• Latency saver for small size messages
P2P effects on latency

- **Latency**
 - APEnet+ G-G latency is lower up to 128KB
 - APEnet+ P2P latency ~8.5 us
 - APEnet+ staging latency ~16.8 us
 - MVAPICH/IB latency ~17.4 us

- **P2P=OFF**
 - cudaMemcpyD2H/H2D() on host bounce buffers
 - Buffers pinned with cuMemHostRegister
 - cudaMemcpy() ~10 us

Rossetti D. et al: “GPU peer-to-peer techniques applied to a cluster interconnect” presented at CASS2013 Workshop (IPDPS 2013 conference)

<table>
<thead>
<tr>
<th>Test</th>
<th>Bandwidth</th>
<th>GPU/method</th>
<th>Nios II active tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host mem read</td>
<td>2.4 GB/s</td>
<td>Fermi/P2P</td>
<td>none</td>
</tr>
<tr>
<td>GPU mem read</td>
<td>1.5 GB/s</td>
<td>Fermi/BAR1</td>
<td>GPU_P2P_TX</td>
</tr>
<tr>
<td>GPU mem read</td>
<td>150 MB/s</td>
<td>Kepler/P2P</td>
<td>GPU_P2P_TX</td>
</tr>
<tr>
<td>GPU mem read</td>
<td>1.6 GB/s</td>
<td>Kepler/BAR1</td>
<td>GPU_P2P_TX</td>
</tr>
<tr>
<td>GPU-to-GPU loop-back</td>
<td>1.1 GB/s</td>
<td>Fermi/P2P</td>
<td>GPU_P2P_TX + RX</td>
</tr>
<tr>
<td>Host-to-Host loop-back</td>
<td>1.2 GB/s</td>
<td></td>
<td>RX</td>
</tr>
</tbody>
</table>
APEnet+ TX bandwidth

HOST TX:
- Completely handled by kernel driver
- 2 DMA channels implemented
- PCI data read request pipelined
- Latency between 2 consecutive Host Memory Read Request
 - Single DMA ~900ns
 - Double DMA ~50ns
- BW ~2.8GB/s (40% improvement)

GPU P2P TX:
- v1 ~ 0.3GB/s
 - Single packet request support
 - No data prefetch (GPU mem is not latency opt)
- v2 ~ 1.4GB/s
 - Read request acceleration (a read req every 80ns)
 - Limited pre-fetching window to 32KB (hiding response latency)
- v3 ~ 1.6GB/s
 - Unlimited pre-fetching window
 - Higher bandwidth in loopback test

Host RX ~1.6 GB/s

GPU RX ~1.4 GB/s (switching GPU P2P window before writing)

Limited by RX LOGIC RDMA Virtual-to-Physical (V2P) Translation, most demanding task.

When handled by Nios II:
- Firmware not optimized: ~1.2GB/s, Latency ~2.2us
- Nios Firmware Optimization ~1.6GB/s, ~1.6us

When handled by HW (TurboRX):
- First implementation. Host RX only! >2.2GB/s
- At hardware level, TLB hardware from 3000ns -> 124 ns (x30) for 128 KB buffer size.
 Work in progress to push up to 1-4 MB packets

Ammendola et al: "VIRTUAL TO PHYSICAL ADDRESS TRANSLATION FOR AN FPGA-BASED INTERCONNECT WITH HOST AND GPU RDMA CAPABILITIES."
Submitted to FPL2013 conf.
SW stack and GPU optimizations

Current APEnet programming model

• native RDMA API:
 o RDMA buffer registration: pinning and posting combined
 o single message transmission async queue
 o async delivery of completion events (both TX and RX)

• MPI for APEnet+ OpenMPI based
 o The Byte Transfer Layer framework provides a set of components for raw data transfer for send/receive and RDMA based interconnects.
 o The apelink BTL uses the RDMA API to program the APEnet+ device
 o early prototype....
From, here where?

1) Can we do something more to increase application performances on hybrid CPU+GPU systems i.e. can our target application benefits from a more powerful torus network card?

2) What about our commercial “competitors”?

Piero Vicini – INFN Roma (piero.vicini@roma1.infn.it)
A simple bottleneck analysis

LQCD as an example

- Slightly modified performance model taken from Babich (STRONGnet 2010), from Gottlieb via Holmgren
- Balance condition: perfect overlap between computing time and communication time

<table>
<thead>
<tr>
<th>GPU lattice</th>
<th>GPUs per node</th>
<th>Node lattice</th>
<th>Global lattice</th>
<th># of nodes</th>
<th># of GPUs</th>
<th>Req BW GB/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>16^3*16</td>
<td>2</td>
<td>16^3*32</td>
<td>64^3*128</td>
<td>256</td>
<td>512</td>
<td>4.3</td>
</tr>
<tr>
<td>16^3*32</td>
<td>2</td>
<td>16^3*64</td>
<td>64^3*128</td>
<td>128</td>
<td>256</td>
<td>4.0</td>
</tr>
<tr>
<td>32^3*32</td>
<td>2</td>
<td>32^3*64</td>
<td>64^3*128</td>
<td>16</td>
<td>32</td>
<td>2.1</td>
</tr>
<tr>
<td>16^3*32</td>
<td>4</td>
<td>16^3*128</td>
<td>64^3*128</td>
<td>64</td>
<td>256</td>
<td>7.4</td>
</tr>
<tr>
<td>32^3*32</td>
<td>4</td>
<td>32^3*128</td>
<td>64^3*128</td>
<td>8</td>
<td>32</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Facts:

1) Current PCIe implementation limits the performance and scaling
 - apeNET+ bandwidth (PCI Gen2 x8 / 34 Gbps per link) allows “strong scaling” up to few tens of GPU

2) Tight time budget i.e. specific HW GPU-APEnet+ optimizations are needed to reduce transfer latency and overheads
Network card competitors...

Mellanox announced full support to RDMA GPU Direct ("Bar0 access")
- At GTC (GPU Tech. Conf, Mar 2013) presented a preliminary set of latency measures for Connect3-X InfiniBand adapter supporting GPU Direct protocol
- GPU Direct RDMA enabled board is available now to “selected customers”; GA in few months from now...

So, APEnet game over?

Not yet, if
- I/O interfaces performance remain comparable (better?)
- coupling of GPU Direct RDMA, High speed low latency network and (huge) FPGA resources is fully exploited
 - Hardware system specialization driven by application requirements
 - Adding “processing on network”, changing routing functions, changing physical network topology, implementing in HW exotic “tasks”, hw support to enhance system fault tolerance,...
APEnet+ customization: NaNet

GPU L0 TRIGGER for HEP Experiments
Implement a RO Board-L0 GPU link with:
- Sustained Bandwidth > 600 MB/s, (RO board output on GbE links)
- Small and stable latency

Problem: lower communication latency and its fluctuations. How?
- Offloading the CPU from network stack protocol management.
- Injecting directly data from the NIC into the GPU(s) memory.

NaNet solution:
- APEnet+ FPGA-based NIC with an additional network stack protocol management offloading engine to the logic (UDP Offloading Engine).

Lonardo A. “Building a Low-latency, Real-time, GPU-based Stream Processing System”
GTC2013 Conference

More details in “GPU for realtime processing in HEP experiments” in this conference
APEnet: 2013-2014 (main) activities

- **APEnet++: adoption of 28nm FPGA**
 - PCIe Gen2 -> Gen3 (x2 data rate)
 - Torus links speed-up: from current 8.5 Gb/s to 14.5 Gb/s (x2)
 - Explore the PCI Gen3 x16 (with PLX technology bridge)
 - Explore the use of the embedded dual-core ARM processor to increase performance (Virt2Phys translation, P2P support,...)

- **Explore V5 porting on EUROTECH Tigon systems**

- **Push on NVIDIA joint activities**
 - Further optimization of P2P GPU-APEnet+ and Kepler, Maxwell,... integration

- **APEnet+ customization: add specific I/O interface and accelerators in FPGA**
 - Low Level Trigger GPU-based for HEP collider (NA62, Atlas,...)
 - Distributed read-out for KM3 Neutrino Telescope (under evaluation)
 - Low latency coupling of read-out system and GPU computing for E-ELT (European Large Telescope) and for X-Ray microscopes imaging (LBNL)
 - Brain simulation: dedicated network for high speed connectoma simulation (DPSNN model)
Conclusions

APEnet+ and QUonG
- APEnet+ V4 in “massive” construction phase.
 - Demonstrated advantages of HW GPU Direct RDMA mechanism introduction in hybrid systems (CPU+GPU)
 - Assembled a medium-size prototype (32 Tflops) almost (...) “ready to use”
 - Software optimization (MPI, RDMA API) in progress

Roadmap 2013-2014
- APEnet+ Versione 5 (V5) based on 28nm FPGA: more room for performance improvements
 - PCIe Gen2->Gen3, Torus link speed enhancements, HardIP ARM coupling to APEnet exploration

Also, fast moving towards new scientific environments
- High-Low level trigger of future HEP experiments
- APEnet+ as low latency GPU interface to read-out system
- Network specialization for computing platform for not “APE traditional” fields: complex systems, Brain Simulation, molecular dynamics...
Thank you! Questions or comments?

Partially supported by EU FP7 grant agreement EURETILE n. 247846
BACKUP SLIDES
Applications highlights: HSG

- 3D Lattice of 3D versors, with randomly distributed, first-neighbours couplings:
 \[H = -\sum_{i \neq j} J_{ij} \hat{\sigma}_i \cdot \hat{\sigma}_j \]

- Lattice is split along 1 dimension, with every GPU taking its slice. Boundaries must be kept in synch!

<table>
<thead>
<tr>
<th>Time</th>
<th>Cluster I</th>
<th>Cluster II OMPI (PCIe X8)</th>
<th>Cluster I OMPI (PCIe X4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P2P=ON</td>
<td>P2P=RX</td>
<td>P2P=OFF</td>
</tr>
<tr>
<td>(T_{tot})</td>
<td>416</td>
<td>416</td>
<td>416</td>
</tr>
<tr>
<td>(T_{bnd} + T_{net})</td>
<td>108</td>
<td>108</td>
<td>108</td>
</tr>
<tr>
<td>(T_{net})</td>
<td>97</td>
<td>91</td>
<td>101</td>
</tr>
</tbody>
</table>

P2P allows for 10-20% latency decreasing

Rossetti D. et al: “GPU peer-to-peer techniques applied to a cluster interconnect” presented at CASS2013 Workshop (IPDPS 2013 conference)
Application highlights: Graph500*

- BFS on multi-GPUs
- Very preliminary results on a 2x2 APEnet+ cluster

TABLE I. Traversed Edges Per Second, Strong Scaling, $|V| = 2^{20}$

<table>
<thead>
<tr>
<th>NP</th>
<th>INFINIBAND</th>
<th>APENET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.25389e+07</td>
<td>6.24038e+07</td>
</tr>
<tr>
<td>2</td>
<td>7.8924e+07</td>
<td>1.01101e+08</td>
</tr>
<tr>
<td>4</td>
<td>8.20081e+07</td>
<td>1.26543e+08</td>
</tr>
</tbody>
</table>

TABLE II. Traversed Edges Per Second, Weak Scaling, $|V| = 2^{SCALE}$

<table>
<thead>
<tr>
<th>NP</th>
<th>SCALE</th>
<th>INFINIBAND</th>
<th>APENET</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td>5.60594e+07</td>
<td>5.9808e+07</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>7.8924e+07</td>
<td>1.01101e+08</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>1.08637e+08</td>
<td>1.46482e+08</td>
</tr>
</tbody>
</table>

Fig. 5. Breakdown of the execution time on one out of four tasks for both APEnet and Infiniband.

*based on code from E.Mastrostefano, M.Bernaschi “Efficient breadth first search on multi-GPU system” submitted to Journal of Parallel and Distributed Computing.
Application highlights: event reconstruction in HEP exps.

GPU for real-time event selections?

- A lot of computing power for highly parallelizable tasks;
- High level programming (CUDA, OpenCL);
- Commercial device → less expensive than dedicated hardware, continuous improvement of performance;
- NOT designed for low latency response.

Real time events selection
- It is usually based on algorithms well suited for parallelization;
- A trigger system needs to be flexible, to be adapted to experiments changing conditions;
- It needs low latencies.

Data transfer + copy to the GPU

Application highlights:
event reconstruction in HEP exps.

Amerio et al “Applications of GPUs to Online Track Reconstruction in HEP Experiments” NSS 2012

Data flow and measurements

From 32 B to 2 kB
- IB: from 33 to 40 μs
- Apenet+: from 30 to 33 μs

Significant latency reduction with Apenet+ (direct GPU memory access)

- INFN Roma (piero.vicini@roma1.infn.it)
LQCD on QUonG

C. Bonati (Pisa), G. Cossu (KEK), M. D’Elia (Pisa), A. Di Giacomo (Pisa) P. Incardona (Pisa)

We have:

- Staggered fermion action is already used in production runs on the study of the QCD phase diagram (e.g. Phys. Rev. D 83, 054505 (2011), arXiv:1011.4515).

- openCL support for Nvidia and AMD GPUs (for Cuda/openCL comparison see arXiv:1106.5673).

<table>
<thead>
<tr>
<th>Lattice 4 × L³</th>
<th>L</th>
<th>16</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opteron (1 core)</td>
<td></td>
<td>65</td>
<td>75</td>
<td>140</td>
</tr>
<tr>
<td>Xeon (1 core)</td>
<td></td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>apeNEXT crate</td>
<td></td>
<td>~2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: NVIDIA C2050 time gains over CPU and apeNEXT (Opteron(tm) 2382 and Xeon(R) X5560)
Multi-GPUs implementation

Key points:
- in-kernel fast field address mapping
- internode and P2P communication overlapped with computation
- data alignment

Multi-GPU scaling:

<table>
<thead>
<tr>
<th>L</th>
<th>32</th>
<th>48</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 C2050</td>
<td>1.60</td>
<td>1.89</td>
<td>1.95</td>
</tr>
<tr>
<td>4 C2050 (infiniband)</td>
<td>2.45</td>
<td>2.98</td>
<td>3.34</td>
</tr>
</tbody>
</table>

Current development:
- implementation of improved discretization for fermions.
- integration with the APE-net project
LQCD on GPU (2)

DSlash Wilson $4^3 \times 96$: multi-GPU, single precision, parallel on XYZT

QUonG CUDA 4.1, O6x, OpenMP (PROFILED and TUNED)

no gauge link compression
12 words per gauge link
8 words per gauge link

Piero Vicini – INFN Roma (piero.vicini@roma1.infn.it)
PIC on QUonG

- PIC (Particle In Cell) code for laser-plasma acceleration
 - F. Rossi, P. Londrillo, A. Sgattoni, S. Sinigardi, G. Turchetti, “Robust algorithms for current deposition and efficient memory usage in a GPU Particle In Cell code” 15th Advanced Accelerator Concepts Workshop (AAC 2012)

4 Jasmine: a flexible, hybrid (CPU+GPU), PIC framework
• The physical problem: QCD phase diagram and confinement
 • Low energy QCD and confinement are intrinsically nonperturbative phenomena.
 • In Lattice QCD a finite lattice is introduced as a nonperturbative gauge invariant regulator and observables are calculated by using Monte Carlo simulations.

• The numerical problem
 • In a LQCD simulation a lot of \(L \times L \) linear systems have to be solved, with \(L \sim 10^5 \div 10^6 \) (!)
 • Need for dedicated high performances supercomputer (APE, Blue-Gene,...)

• Algorithmic peculiarities
 • Homogeneity
 • Ideally suited for SIMD parallelization on many core architectures
 • Locality
 • Parallel machine efficient scaling through the adoption of low latency, point-to-point 3D Torus network

Impact of lattice QCD machines on the supercomputer dep...