

NaNet: a configurable Network Interface Card for Trigger and DAQ systems

Andrea Biagioni
INFN – Sezione di Roma
On behalf of NaNet collaboration

Conference on Computing in High Energy and Nuclear Physics
10 -14 October 2016

NaNet Objectives

Design and implementation of a family of FPGA-based PCIe Network Interface Cards:

- Bridging the front-end electronics and the software trigger computing nodes.
- Supporting multiple link technologies and network protocols.
- Enabling a low and stable communication latency.
- Having a high bandwidth.
- Processing data streams from detectors on the fly (data compression/decompression and re-formatting, coalescing of event fragments, ...).
- Optimizing data transfers with GPU accelerators.

NaNet Modular Design

- I/O Interface
 - Multiple physical link technologies
 - Network protocols offloading
 - Application-specific processing on data stream
- Router
 - Dynamically interconnects I/O and NI ports
- Network Interface
 - Manages packets TX/RX from and to CPU/GPU memory
 - Zero-Copy RDMA
 - GPU I/O accelerator
 - TLB for Virtual to Physical mem map
 - Microcontroller
- PCIe X8 Gen2/3 Core

NaNet Design – GPUDirect RDMA

Andrea Biagioni et Al.
Poster:

"Latest generation interconnect technologies in APEnet+ networking

NaNet | APEnet+

GPU

GPU

PCle

Chipset

Non-GPUDirect capable NIC data flow

Intermediate buffering on CPU memory for I/O

operations.

GPUDirect allows direct data exchange on the PCIe bus with no CPU involvement.

- No bounce buffers on host memory.
- Zero copy I/O.
- Latency reduction for small messages.
- nVIDIA Fermi/Kepler/Maxwell

CPU

SYSTEM

NA62

- □ Distinguish between pions and muons from 15 to 35 GeV (inefficiency < 1%)</p>
- 2 spots of 1000 PMs each
- 2 read-out boards for each spot

Measurement of the ultra-rare decay $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ (BR~8×10⁻¹¹)

Kaon decays in flight

High intensity unsepareted hadron beam (6% Kaons)

L0 Trigger: synchronous level must reduce rate from 10MHz to 1 Mhz

Latency: 1 ms

GPU-LO TRIGGER

- 4 TEL62 (4x1GbE)
- 8×1Gb/s Readout
 - 4×1Gb/s trigger primitive
 - 4×1Gb/s GPU trigger
- Event Rate: 10 MHz
 - L0 trigger rate: 1 MHz
 - Max Latency: 1 ms

- Compare FPGA-based trigger with a GPU-based one
- More Selective trigger algorithms
 - Programmable
 - Upgradable
- Efficient match of circulat hit patterns

GPU-based L0 trigger for Ring reconstruction

NaNet-10

- □ Terasic DE5-NET (Altera Stratix V)
- □ PCIe x8 Gen3
- □ 4 SFP+ ports (10GbE)
- nVIDIA GPUDirect RDMA
- UDP offloading
- Real-time processing
 - Decompression, Event Merger

NaNet-10 @CERN

DATA FLOW & GPU PROCESSING

- NIC data flow
 - UDP manager
 - Decompressor
 - Event Merger
 - NaNet Transmission Control Logic
 - GPU memory write process
- Data Gathering
 - Completion: Data are ready
- GPU processing
 - Event Finder
 - Fitter
- □ GPU processing ≤ Data Gathering!!!
 - Otherwise loss of data

Why HW Merger?

- Merging the events coming from the RICH on GPU... NO WAY
 - it requires synchronization and serialization
 - computing kernel launched after merging
- Gathering latency: 200μs
- GPU Merger latency: 250μs (higher than gathering, data loss)
 - 800ns @event
- ☐ HW Merger Latency: 300ns @event

EVENT FINDER

STR 3 MGP	STR 2 MGP	STR 1 MGP STR 0 MGP		STR 3 HIT STR 2 HIT		STR 1 HIT STR 0 HIT		PATTERN		TOTAL HIT		TIMEST		ТАМР	
STREAM 1; HIT 1		STREAM 1; HIT 0		STREAM 0; HIT 5		STREAM 0; HIT 4		STREAM 0; HIT 3		STREAM 0; HIT 2		STREAM 0; HIT 1		STREAM 0; HIT 0	
STREAM 2; HIT 0		STREAM 1; HIT 8		STREAM 1; HIT 7		STREAM 1; HIT 6		STREAM 1; HIT 5		STREAM 1; HIT 4		STREAM 1; HIT 3		STREAM 1; HIT 2	
STREAM 2; HIT 8		STREAM 2; HIT 7		STREAM 2; HIT 6		STREAM 2; HIT 5		STREAM 2; HIT 4		STREAM 2; HIT 3		STREAM 2; HIT 2		STREAM 2; HIT 1	
STREAM 3; HIT 4		STREAM 3; HIT 3		STREAM 3; HIT 2		STREAM 3; HIT 1		STREAM 3; HIT 0		STREAM 2; HIT 11		STREAM 2; HIT 10		STREAM 2; HIT 9	
PADDING										STREAM 3; HIT 7		STREAM 3; HIT 6		STREAM 3; HIT 5	
127120	119112	111104	10396	9588	8780	7972	7164	6356	5548	4740	3932	3124	2316	158	70

- □ Events are arranged in CLOPs with new format more suitable for GPU's threads memory access Multi Merged Event GPU Packet (M²EGP).
- □ Problem: searching for events position inside a CLOP using 1 thread on GPU takes > 100us for hundreds of events
- Solution: it must be parallelized. We can use all the threads looking for a known bytes pattern at the begin of every event: it takes ~ 35μs for 1000 events in a buffer

EVENTFINDER-RXEVENT, nowarmup r6215 b373

110
100
90
80
70
40
30
20
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Histogram: pattern recognition algorithm

- XY plane divided into a grid
- □ An histogram is created with distances from these points and hits of the physics event
- □ Rings are identified looking at distance bins whose contents exceed a threshold value

2-step implementation 8x8 grid -> 64 threads x event 4x4 grid only around maximum

NA62 2016 RUN

- Testbed (experimental result)
 - Supermicro X9DRG-QF Intel C602 Patsburg
 - Intel Xeon E5-2602 2.0 GHz
 - 32 GB DDR3
 - nVIDIA K20c

- ~ 25% target beam intensity (9*1011 Pps)
- 1/16 downscaling factor
 - 8 CLOP, 32kB each
 - Gathering time: 350ms

Conclusion

- NaNet-10 is ready
 - 10 GbE channel
 - Real-time processing: Decompressor and Merger stages
- Ring reconstruction on GPU
 - Histogram (< 1μs per event)
- Future Work
 - NaNet-10: 4x 10GbE channels, PCIe Gen3 x8
 - Future NaNet NIC: OpenCL Kernel, SoC, 40GbE
 - New multiring algorithm on GPU: Almagest (<0.5 μs per event)

Thank you

□ NaNet Collaboration:

- R. Ammendola^(a), A. Biagioni^(b), P. Cretaro^(b), S. Di Lorenzo^(c)
 O. Frezza^(b), G. Lamanna^(d), F. Lo Cicero^(b), A. Lonardo^(b),
 M. Martinelli^(b), P. S. Paolucci^(b), E. Pastorelli^(b), R. Piandani^(f),
- L. Pontisso^(d), D. Rossetti^(e), F. Simula^(b), M. Sozzi^(c), P. Valente^(b),
- P. Vicini^(b)
- (a) INFN Sezione di Roma Tor Vergata
- (b) INFN Sezione di Roma
- (c) INFN Sezione di Pisa and CERN
- (d) INFN LNF and CERN
- (e) nVIDIA Corporation, USA